1. Pseudomonas pyocyanea N.C.T.C. 8203 produces a beta-lactamase that is inducible by high concentrations of benzylpenicillin or cephalosporin C. Methicillin appeared to be a relatively poor inducer, but this could be attributed in part to its ability to mask the enzyme produced. Much of the enzyme is normally cell-bound. 2. No evidence was obtained that the crude enzyme preparation consisted of more than one beta-lactamase and the preparation appeared to contain no significant amount of benzylpenicillin amidase or of an acetyl esterase. 3. The maximum rate of hydrolysis of cephalosporin C and several other derivatives of 7-aminocephalosporanic acid by the crude enzyme was more than five times that of benzylpenicillin. Methicillin, cloxacillin, 6-aminopenicillanic acid and 7-aminocephalosporanic acid were resistant to hydrolysis, and methicillin and cloxacillin were powerful competitive inhibitors of the action of the enzyme on easily hydrolysable substrates. 4. Cephalosporin C, cephalothin and cephaloridine yielded 2 equiv. of acid/mole on enzymic hydrolysis, and deacetylcephalorsporin C yielded 1 equiv./mole. Evidence was obtained that the opening of the beta-lactam ring of cephalosporin C and cephalothin is accompanied by the spontaneous expulsion of an acetoxy group and that of cephaloridine by the expulsion of pyridine. 5. A marked decrease in the minimum inhibitory concentration of benzylpenicillin and several hydrolysable derivatives of 7-aminocephalosporanic acid was observed when the size of the inoculum was decreased. This suggested that the production of a beta-lactamase contributed to the factors responsible for the very high resistance of Ps. pyocyanea to these substances. It was therefore concluded that the latter might show synergism with the enzyme inhibitors, methicillin and cloxacillin, against this organism.
Because there are few persuasive data for selecting one semisynthetic penicillin or cephalosporin over another for treatment of serious staphylococcal infections, 118 recent clinical isolates of Staphylococcus aureus were studied to determine to what extent the presence of fl-lactamase affected the relative anti-staphylococcal activity of six penicillins and seven cephalosporins. In addition, the effect of inoculum was studied for its possible effect on the anti-staphylococcal activity of the 13 ,8-lactam antibiotics. By all criteria, methicillin and nafcillin were clearly more resistant to both the inoculum effect and the production of staphylococcal ,B-lactamase, whereas benzylpenicillin and cephaloridine (especially benzylpenicillin) were the most susceptible to these effects. Cephazolin was clearly more susceptible to staphylococcal #-lactamase and heavy inocula than the other cephalosporins (with the exception of cephaloridine), whereas cephalothin was the most resistant cephalosporin to these factors. The minimal inhibitory concentration for benzylpenicillin for tests with undiluted inoculum, compared to results with inoculum diluted 10-4, differed by a factor up to 16,384, whereas with methicillin and nafcillin the differences were rarely more than twofold. Ratios for the other 10 antibiotics fell between these extremes. These results suggest that methicillin or nafcillin is most stable to staphylococcal ,-lactamase, and that benzylpenicillin and cephaloridine are the most susceptible.
Minimum inhibitory concentrations (MICs) were determined under both routine aerobic and anaerobic conditions for a total of 93 organisms representing nine genera. MICs for the aminoglycosides amikacin, gentamicin, and tobramycin were significantly increased under anaerobic conditions. Tobramycin was most sensitive to the loss of antimicrobial activity with anaerobiasis. MICs for staphylococci were increased by a higher factor than were MICs for gram-negative rods, but even within the latter group increases in MICs for Proteus species were greater than for Salmonella, Klebsiella and Escherichia coli No change of anaerobic versus aerobic activity was seen for latamoxef, piperacillin, chloramphenicol, or clindamycin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.