The cellular interleukin-6 (IL-6) gene contains a target site for the mammalian transcriptional repressor RBP. The target site is contained within the interleukin response element (ILRE), which mediates IL-6 activation by NF-kappa B. In this study, we show by using transient-expression assays that RBP represses activated transcription from the IL-6 gene. The presence and position of the RBP target site are crucial in mediating repression by RBP. While RBP binds within the ILRE, it does not target NF-kappa B alone; nonetheless, NF-kappa B binding to the ILRE is required for repression. Our results indicate that RBP represses coactivation by NF-kappa B and another cellular transcription factor, C/EBP-beta.
The left end of the adenovirus genome is arranged such that the polypeptide IX gene is 'buried' (entirely contained) within the E1B transcription unit. The E1B gene is transcribed actively early in infection while, in contrast, IX gene transcription only occurs after DNA replication. Using recombinant plasmid constructs and recombinant viruses, we have found that the nested arrangement of the IX gene prevents its transcription. The experiments show that E1B transcription across the IX promoter inhibits IX gene expression early in infection, and yet, the 21-kD E1B protein activates the IX gene. IX mRNA synthesis occurs in the absence of DNA replication when the E1A gene and E1B promoter are absent, but only when the 21-kD E1B protein is present in trans. Our results indicate that during the adenovirus infectious cycle, the only templates on which IX transcription can be activated are newly replicated templates not committed to E1B transcription. This situation may be a model for genes that are activated specifically at the time of replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.