Context. This is the first publication from the DEATHSTAR project. The overall goal of the project is to reduce the uncertainties of the observational estimates of mass-loss rates from evolved stars on the Asymptotic Giant Branch (AGB). Aim. The aim in this first publication is to constrain the sizes of the 12CO emitting region from the circumstellar envelopes around 42 mostly southern AGB stars, of which 21 are M-type and 21 are C-type, using the Atacama Compact Array (ACA) at the Atacama Large Millimeter/submillimeter Array. The symmetry of the outflows is also investigated. Methods. Line emission from 12CO J = 2→1 and 3→2 from all of the sources were mapped using the ACA. In this initial analysis, the emission distribution was fit to a Gaussian distribution in the uv-plane. A detailed radiative transfer analysis will be presented in a future publication. The major and minor axis of the best-fit Gaussian at the line center velocity of the 12CO J = 2→1 emission gives a first indication of the size of the emitting region. Furthermore, the fitting results, such as the Gaussian major and minor axis, center position, and the goodness of fit across both lines, constrain the symmetry of the emission distribution. For a subsample of sources, the measured emission distribution is compared to predictions from previous best-fit radiative transfer modeling results. Results. We find that the CO envelope sizes are, in general, larger for C-type than for M-type AGB stars, which is as expected if the CO/H2 ratio is larger in C-type stars. Furthermore, the measurements show a relation between the measured (Gaussian) 12CO J = 2→1 size and circumstellar density that, while in broad agreement with photodissociation calculations, reveals large scatter and some systematic differences between the different stellar types. For lower mass-loss-rate irregular and semi-regular variables of both M- and C-type AGB stars, the 12CO J = 2→1 size appears to be independent of the ratio of the mass-loss rate to outflow velocity, which is a measure of circumstellar density. For the higher mass-loss-rate Mira stars, the 12CO J = 2→1 size clearly increases with circumstellar density, with larger sizes for the higher CO-abundance C-type stars. The M-type stars appear to be consistently smaller than predicted from photodissociation theory. The majority of the sources have CO envelope sizes that are consistent with a spherically symmetric, smooth outflow, at least on larger scales. For about a third of the sources, indications of strong asymmetries are detected. This is consistent with what was found in previous interferometric investigations of northern sources. Smaller scale asymmetries are found in a larger fraction of sources. Conclusions. These results for CO envelope radii and shapes can be used to constrain detailed radiative transfer modeling of the same stars so as to determine mass-loss rates that are independent of photodissociation models. For a large fraction of the sources, observations at higher spatial resolution will be necessary to deduce the nature and origin of the complex circumstellar dynamics revealed by our ACA observations.
Context. There is growing evidence that red giant evolution is often affected by an interplay with a nearby companion, in some cases taking the form of a common-envelope evolution. Aims. We have performed a study of the characteristics of the circumstellar environment of the binary object HD 101584, that provides information on a likely evolutionary scenario. Methods. We have obtained and analyzed ALMA observations, complemented with observations using APEX, of a large number of molecular lines. An analysis of the spectral energy distribution has also been performed. Results. Emissions from 12 molecular species (not counting isotopologues) have been observed, and most of them mapped with angular resolutions in the range 0 . 1 to 0 . 6. Four circumstellar components are identified: i) a central compact source of size ≈ 0 . 15, ii) an expanding equatorial density enhancement (a flattened density distribution in the plane of the orbit) of size ≈ 3 , iii) a bipolar high-velocity outflow (≈ 150 km s −1 ), and iv) an hourglass structure. The outflow is directed almost along the line of sight. There is evidence of a second bipolar outflow. The mass of the circumstellar gas is ≈ 0.5 [D/1 kpc] 2 M , about half of it lies in the equatorial density enhancement. The dust mass is ≈ 0.01 [D/1 kpc] 2 M , and a substantial fraction of this is in the form of large-sized, up to 1 mm, grains. The estimated kinetic age of the outflow is ≈ 770 [D/1 kpc] yr. The kinetic energy and the scalar momentum of the accelerated gas are estimated to be 7×10 45 [D/1 kpc] 2 erg and 10 39 [D/1 kpc] 2 g cm s −1 , respectively. Conclusions. We provide good evidence that the binary system HD 101584 is in a post-common-envelope-evolution phase, that ended before a stellar merger. Isotope ratios combined with stellar mass estimates suggest that the primary star's evolution was terminated already on the first red giant branch (RGB). Most of the energy required to drive the outflowing gas was probably released when material fell towards the companion.
Context. The S-type asymptotic giant branch (AGB) star π 1 Gru has a known companion at a separation of 2 ′′ . 7 (≈400 AU). Previous observations of the circumstellar envelope (CSE) show strong deviations from spherical symmetry. The envelope structure, including an equatorial torus and a fast bipolar outflow, is rarely seen in the AGB phase and is particularly unexpected in such a wide binary system. Therefore a second, closer companion has been suggested, but the evidence is not conclusive. Aims. The aim is to make a 3D model of the CSE and to constrain the density and temperature distribution using new spatially resolved observations of the CO rotational lines. Methods. We have observed the J=3-2 line emission from 12 CO and 13 CO using the compact arrays of the Atacama Large Millimeter/submillimeter Array (ALMA). The new ALMA data, together with previously published 12 CO J=2-1 data from the Submillimeter Array (SMA), and the 12 CO J=5-4 and J=9-8 lines observed with Herschel/Heterodyne Instrument for the Far-Infrared (HIFI), is modeled with the 3D non-LTE radiative transfer code SHAPEMOL. Results. The data analysis clearly confirms the torus-bipolar structure. The 3D model of the CSE that satisfactorily reproduces the data consists of three kinematic components: a radially expanding torus with velocity slowly increasing from 8 to 13 km s −1 along the equator plane; a radially expanding component at the center with a constant velocity of 14 km s −1 ; and a fast, bipolar outflow with velocity proportionally increasing from 14 km s −1 at the base up to 100 km s −1 at the tip, following a linear radial dependence. The results are used to estimate an average mass-loss rate during the creation of the torus of 7.7×10 −7 M ⊙ yr −1 . The total mass and linear momentum of the fast outflow are estimated at 7.3×10 −4 M ⊙ and 9.6×10 37 g cm s −1 , respectively. The momentum of the outflow is in excess (by a factor of about 20) of what could be generated by radiation pressure alone, in agreement with recent findings for more evolved sources. The best-fit model also suggests a 12 CO/ 13 CO abundance ratio of 50. Possible shaping scenarios for the gas envelope are discussed.
Context. This study follows up the previous analysis of lower-angular resolution data in which the kinematics and structure of the circumstellar envelope (CSE) around the S-type asymptotic giant branch (AGB) star π 1 Gruis were investigated. The AGB star has a known companion (at a separation of ∼400 AU) which cannot explain the strong deviations from spherical symmetry of the CSE. Recently, hydrodynamic simulations of mass transfer in closer binary systems have successfully reproduced the spiral-shaped CSEs found around a handful of sources. There is growing evidence for an even closer, undetected companion complicating the case of π 1 Gruis further. Aims. The improved spatial resolution allows for the investigation of the complex circumstellar morphology and the search for imprints on the CSE of the third component. Methods. We have observed the 12 CO J=3-2 line emission from π 1 Gruis using both the compact and extended array of Atacama Large Millimeter/submillimeter Array (ALMA). The interferometric data has furthermore been combined with data from the ALMA total power (TP) array. The imaged brightness distribution has been used to constrain a non-local, non-LTE 3D radiative transfer model of the CSE. Results. The high-angular resolution ALMA data have revealed the first example of a source on the AGB where both a faster bipolar outflow and a spiral pattern along the orbital plane can be seen in the gas envelope. The spiral can be traced in the low-to intermediatevelocity (13-25 km s −1 ) equatorial torus. The largest spiral-arm separation is ≈5 ′′ . 5 and consistent with a companion with an orbital period of ≈330 yrs and a separation of less than 70 AU. The kinematics of the bipolar outflow is consistent with it being created during a mass-loss eruption where the mass-loss rate from the system increased by at least a factor of 5 during 10-15 yrs. Conclusions. The spiral pattern is the result of an undetected companion. The bipolar outflow is the result of a rather recent mass-loss eruption event.
Context. This is the first publication from the DEATHSTAR project. The overall goal of the project is to reduce the uncertainties of the observational estimates of mass-loss rates from evolved stars on the Asymptotic Giant Branch (AGB). Aims. The aim in this first publication is to constrain the sizes of the 12 CO emitting region from the circumstellar envelopes around 42 mostly southern AGB stars, of which 21 are M-type and 21 are C-type, using the Atacama Compact Array (ACA) at the Atacama Large Millimeter/submillimeter Array (ALMA). The symmetry of the outflows is also investigated. Methods. Line emission from 12 CO J=2→1 and 3→2 from all of the sources were mapped using the ACA. In this initial analysis, the emission distribution was fit to a Gaussian distribution in the uv-plane. A detailed radiative transfer analysis will be presented in a future publication. The major and minor axis of the best-fit Gaussian at the line center velocity of the 12 CO J=2→1 emission gives a first indication of the size of the emitting region. Furthermore, the fitting results, such as the Gaussian major and minor axis, center position, and the goodness of fit across both lines, constrain the symmetry of the emission distribution. For a subsample of sources, the measured emission distribution is compared to predictions from previous best-fit radiative transfer modeling results. Results. We find that the CO envelope sizes are, in general, larger for C-type than for M-type AGB stars, which is as expected if the CO/H 2 ratio is larger in C-type stars. Furthermore, the measurements show a relation between the measured (Gaussian) 12 CO J=2→1 size and circumstellar density that, while in broad agreement with photodissociation calculations, reveals large scatter and some systematic differences between the different stellar types. For lower mass-loss-rate irregular and semi-regular variables of both M-and C-type AGB stars, the 12 CO J=2→1 size appears to be independent of the ratio of the mass-loss rate to outflow velocity, which is a measure of circumstellar density. For the higher mass-loss-rate Mira stars, the 12 CO J=2→1 size clearly increases with circumstellar density, with larger sizes for the higher CO-abundance C-type stars. The M-type stars appear to be consistently smaller than predicted from photodissociation theory. The majority of the sources have CO envelope sizes that are consistent with a spherically symmetric, smooth outflow, at least on larger scales. For about a third of the sources, indications of strong asymmetries are detected. This is consistent with what was found in previous interferometric investigations of northern sources. Smaller scale asymmetries are found in a larger fraction of sources. Conclusions. These results for CO envelope radii and shapes can be used to constrain detailed radiative transfer modeling of the same stars so as to determine mass-loss rates that are independent of photodissociation models. For a large fraction of the sources, observations at higher spatial resolution will be necessary t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.