A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ∼15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from 2014 September to late November, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C 138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ∼350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
The asymptotic giant branch star R Sculptoris is surrounded by a detached shell of dust and gas 1,2 . The shell originates from a thermal pulse during which the star undergoes a brief period of increased mass loss 3,4 . It has hitherto been impossible to constrain observationally the timescales and mass-loss properties during and after a thermal pulse − parameters that determine the lifetime on the asymptotic giant branch and the amount of elements returned by the star. Here we report observations of CO emission from the circumstellar envelope and shell around R Sculptoris with an angular resolution of 1.3". What was hitherto thought to be only a thin, spherical shell with a clumpy structure, is revealed to contain a spiral structure. Spiral structures associated with circumstellar envelopes have been seen previously, from which it was concluded that the systems must be binaries 5,6,7,8 . Using the data, combined with hydrodynamic simulations, we conclude that R Sculptoris is a binary system that underwent a thermal pulse ≈1800 years ago, lasting ≈200 years. About 3×10 !3 M ! of mass was ejected at a velocity of 14.3 km s −1 and at a rate ≈30 times higher than the prepulse mass-loss rate. This shows that ≈3 times more mass is returned to the interstellar medium during and immediately after a pulse than previously thought. The detached shell around R Sculptoris was observed in CO(J = 3 − 2) emission at 345 GHz using the Atacama Large Millimeter/submillimeter Array (ALMA) during Cycle 0 operations (Fig.1, and supplementary information). The data clearly show the well-centered detached shell with a radius of 18.5", and reveal a spiral structure extending from the central star outwards to the shell. Previous observations of R Sculptoris show structure in the form of clumps. However, this was interpreted as clumpy material within the shell itself, and not as a structure interior to the shell 2 . Until now no clear signs of binary companions have been observed in the detached shell sources (with a possible exception for the detached shell around TT Cyg 9 ). The observed structure around R Sculptoris, however, indicates the presence of a companion, shaping the stellar wind into a spiral shell structure 8 . Smoothed particle hydrodynamics (SPH) models show that a wide binary companion can have a significant effect in the shaping of the wind, leading to elliptical and spiral structures (e.g. as observed in the case of the envelope of AFGL 3068) 5,6 . The observed shapes of the circumstellar envelopes (CSEs) around binary AGB stars depend on the physical parameters of the binary system (e.g., separation and mass ratio 10 ), the density contrasts imprinted on the wind, the temperatures in the CSE, the viewing angle, and, in the case of the gas, the chemistry and excitation 11 . The temporal variations of the mass-loss-rate and the expansion velocity further affect the structure of the CSE. Hence, the observed spiral structure and detached shell allow us to measure these important properties, and to directly link them to th...
We report results from the initial stage of a long-term pulsar survey of the Galactic plane using the Arecibo L-band Feed Array (ALFA), a seven-beam receiver operating at 1.4 GHz with 0.3 GHz bandwidth, and fastdump digital spectrometers. The search targets low Galactic latitudes, |b| 5 • , in the accessible longitude ranges, 32 • ℓ 77 • and 168 • ℓ 214 • . The instrumentation, data processing, initial survey observations, sensitivity, and database management are described. Data discussed here were collected over a 100 MHz passband centered on 1.42 GHz using a spectrometer that recorded 256 channels every 64 µs. Analysis of the data with their full time and frequency resolutions is ongoing. Here, we report the results of a preliminary, low-resolution analysis for which the data were decimated to speed up the processing. We have detected 29 previously known pulsars and discovered 11 new ones. One of these, PSR J1928+1746, with a period of 69 ms and a relatively low characteristic age of 82 kyr, is a plausible candidate for association with the unidentified EGRET source 3EG J1928+1733. Another, PSR J1906+07, is a non-recycled pulsar in a relativistic binary with orbital period of 3.98 hr. In parallel with the periodicity analysis, we also search the data for isolated dispersed pulses. This technique has resulted in the discovery of PSR J0628+09, an extremely sporadic radio emitter with a spin period of 1.2 s. Simulations we have carried out indicate that ∼ 1000 new pulsars will be found in our ALFA survey. In addition to providing a large sample for use in population analyses and for probing the magnetoionic interstellar medium, the survey maximizes the chances of finding rapidly spinning millisecond pulsars and pulsars in compact binary systems. Our search algorithms will exploit the multiple data streams from ALFA to discriminate between radio frequency interference and celestial signals, including pulsars and possibly new classes of transient radio sources.
The highest velocity neutron stars establish stringent constraints on natal kicks, asymmetries in supernova core collapse, and the evolution of close binary systems. Here we present the first results of a long-term pulsar astrometry program using the VLBA. We measure a proper motion and parallax for the pulsar B1508+55, leading to model-independent estimates of its distance (2.37+0.23-0.20 kpc) and transverse velocity (1083+103-90 km/s), the highest velocity directly measured for a neutron star. We trace the pulsar back from its present Galactic latitude of 52.3 degrees to a birth site in the Galactic plane near the Cyg OB associations, and find that it will inevitably escape the Galaxy. Binary disruption alone is insufficient to impart the required birth velocity, and a natal kick is indicated. A composite scenario including a large kick along with binary disruption can plausibly account for the high velocity.Comment: 5 pages, including 2 figures; accepted by ApJL; associated NRAO press release at http://www.nrao.edu/pr/2005/fastpulsar
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.