The present experiment was undertaken to determine the effects of dietary supplements of folic acid and vitamin B12 given from 3 wk before to 8 wk after calving on lactational performance and metabolism of 24 multiparous Holstein cows assigned to 6 blocks of 4 cows each according to their previous milk production. Supplementary folic acid at 0 or 2.6 g/d and vitamin B12 at 0 or 0.5 g/d were used in a 2 x 2 factorial arrangement. Supplementary folic acid increased milk production from 38.0 +/- 0.9 to 41.4 +/- 1.0 kg/d and milk crude protein yield from 1.17 +/- 0.02 to 1.25 +/- 0.03 kg/d. It also increased plasma Gly, Ser, Thr, and total sulfur AA, decreased Asp, and tended to increase plasma Met. Supplementary B12 decreased milk urea N, plasma Ile, and Leu and tended to decrease Val but increased homocysteine, Cys, and total sulfur AA. Liver concentration of phospholipids was higher in cows fed supplementary B12. Plasma and liver concentrations of folates and B12 were increased by their respective supplements, but the increase in plasma folates and plasma and liver B12 was smaller for cows fed the 2 vitamins together. In cows fed folic acid supplements, supplementary B12 increased plasma glucose and alanine, tended to decrease plasma biotin, and decreased Km of the methylmalonyl-coenzyme A mutase in hepatic tissues following addition of deoxyadenosylcobalamin, whereas it had no effect when cows were not fed folic acid supplements. There was no treatment effect on plasma nonesterified fatty acids as well as specific activity and gene expression of Met synthase and methylmalonyl-coenzyme A mutase in the liver. Ingestion of folic acid supplements by cows fed no supplementary B12 increased total lipid and triacylglycerols in liver, whereas these supplements had no effect in cows supplemented with B12. The increases in milk and milk protein yields due to folic acid supplements did not seem to be dependent on the vitamin B12 supply. However, when vitamin B12 was given in combination with folic acid, utilization of the 2 vitamins seems to be increased, probably more so in extrahepatic tissues. Metabolic efficiency seems also to be improved as suggested by similar lactational performance and dry matter intake for cows fed supplementary folic acid but increased plasma glucose and decreased hepatic lipids in cows fed folic acid and vitamin B12 together.
The objectives of this study were to determine the immunoglobulin G (IgG) content of colostrum on Alberta dairy farms and to determine which on-farm tool, the colostrometer or the Brix refractometer, was more highly correlated with IgG content as determined by radial immunodiffusion (RID). Colostrum samples (n=569) were collected between February and July 2012 from 13 commercial dairy farms in central Alberta, with herds ranging in size from 60 to 300 lactating cows. Immunoglobulin G content was determined directly by RID and indirectly by a colostrometer (specific gravity) and Brix refractometer (total solids). The Spearman correlation was used for the colostrometer and Brix refractometer data. According to RID analysis, 29.1% of the colostrum samples contained <50 mg/mL IgG. Concentrations ranged from 8.3 to 128.6 mg/mL IgG, with a median of 65.1 mg/mL. Third or greater parity cows had higher colostral IgG content (69.5±1.98 mg/mL) than second parity (59.80±2.06 mg/mL) or first parity (62.2±1.73 mg/mL) cows. The colostrometer data were more highly correlated with RID results (r=0.77) than were the Brix refractometer data (r=0.64). Specificity and sensitivity were determined for the colostrometer and Brix refractometer compared with a cut-point of 50 mg/mL IgG as determined by RID. The highest combined value for sensitivity and specificity occurred at 80 mg/mL for the colostrometer (84.1 and 77.0%, respectively) and 23% Brix (65.7 and 82.8%, respectively). This study indicates that although the colostrometer data are better correlated with true IgG values, the user-friendly Brix refractometer is a more specific tool to detect colostrum of adequate quality.
Twenty-six multiparous Holstein cows were used to examine the effects of prepartum energy and protein intake on periparturient metabolism and lactation performance. Two levels of energy, 1.65 Mcal/kg of net energy for lactation (NEL) and 1.30 Mcal/kg of NEL, and two levels of protein, 17.0% CP and 12.5% CP, were tested according to a factorial arrangement in a randomized block design. Dietary treatments were fed ad libitum from 21 d before expected calving date to the day of calving. After calving, all cows were fed the same diet. Increased nutrient density did not affect prepartum feed intake, but postpartum intake was higher for cows fed the high-energy diets. Treatment had no effect on cow body weight and body condition score, however, cows fed the high-energy diets were in greater energy balance throughout the study. Milk and milk component yields were unaffected by treatment. Cows fed the high-energy diets had lower plasma nonesterified fatty acid concentrations than cows fed the low energy diets (354.3 vs. 439.9 mumol/L). Hepatic triglyceride concentrations were lower for cows on the high-energy diets than for those on the low-energy diets. Liver glycogen was unaffected by treatment. Acetyl-CoA carboxylase and fatty acid synthase abundance was significantly lower at calving than pretreatment, and higher for cows on the high-energy diets relative to those on the low-energy diets. The activity of acetyl-CoA carboxylase and lipoprotein lipase was greatly decreased with the onset of lactation. Increased protein intake prepartum resulted in elevated plasma beta-hydroxybutyrate concentrations postpartum. Prepartum plasma urea nitrogen was increased and 3-methylhistidine decreased by the high protein treatments. Overall, increased energy density of prepartum diets had beneficial effects on feed intake and lipid metabolism but did not improve lactation performance. Increasing the protein content of the prepartum diet did not appear to confer any advantages to cow productivity.
Most prediction schemes of milk protein secretion overestimate milk protein yield from dairy cows at high protein intakes, thereby overestimating milk protein yield response to protein supplementation. This study was conducted to determine factors contributing to such an overestimation. Using published studies, a database was constructed that was limited to amino acid (AA) infusion studies, as then only the digestible amino acid of dietary origin needed to be estimated, whereas the amount infused was known exactly, thereby reducing the dependence on estimated values. Although milk protein yield was positively related with total energy supply, and both digestible duodenal supply and infused AA, in this database there was no relationship between milk protein yield response above control treatments and the nutrient status of the cows (energy or protein). Total milk protein yield was defined as a function of individual AA supply, using a segmented-linear and a logistic model to obtain estimates of the efficiency of conversion of AA into milk protein. Except for Lys and Met supply, the segmented-linear model yielded lower root mean square error and better correlation, but both models were similar in their reliability. For both models, the estimated efficiency of conversion of AA to milk differed among AA. Estimations of the ideal profile of AA for lactating dairy cows were similar between models, with requirements for Lys and Met in line with 2001 National Research Council recommendations. The major difference is that the segmented-linear model yields a constant efficiency of conversion of an AA until requirements are met, with zero efficiency beyond this point. The logistic model allows for an estimation of the decreasing marginal efficiency of conversion of AA as the supply approaches the requirements. The use of variable efficiency factors should improve our ability to predict protein yield in response to supplemental protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.