A previously unreported ferroelectric phase has been discovered in a highly homogeneous sample of PbZr0.52Ti0.48O3 by high-resolution synchrotron x-ray powder diffraction measurements. At ambient temperature the sample has tetragonal symmetry (at=4.037 Å, ct=4.138 Å), and transforms below ∼250 K into a phase which, unexpectedly, has monoclinic symmetry (am=5.717 Å, bm=5.703 Å, cm=4.143 Å, β=90.53°, at 20 K). The intensity data strongly indicate that the polar axis lies in the monoclinic ac plane close to the pseudocubic [111] direction, which would be an example of the species m3m(12)A2Fm predicted on symmetry grounds by Shuvalov.
The dielectric relaxation of a solid solution of 10-mol % lead titanate in lead magnesium niobate is found to be similar to the magnetic relaxation in spin-glass systems.1–3 Based on this analogy, it is proposed that the relaxor ferroelectric is a polar-glassy system which has thermally activated polarization fluctuations above a static freezing temperature. An activation energy and freezing temperature of 0.0407 eV and 291.5 K, respectively, were found by analyzing the frequency dependence of the temperature of the dielectric maximum using the Vogel–Fulcher relationship.4,5 It has also been shown that a macroscopic polarization is sustained on heating up to this freezing temperature. A coupling between nanometer scale clusters is believed to control the kinetics of the fluctuations and the development of a frustration as the system freezes into states of local equilibrium. The possibility of an orientational freezing associated with the ferroelastic nature of the nanosized polar regions in the rhombohedral relaxor families as well as a polar freezing is discussed. A diffuse phase transformation is believed to arise due to a dispersion in the fluctuation frequency of the polarization. A qualitative model for the relaxation time spectrum is also proposed in which the width of the spectrum broadens strongly near the freezing temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.