We describe the injtial experiments to study the Z-pinch-drjven hohlraum ligh-yield jnertjal confinement fusion (ICF) concept of Hammer and Porter [J. H. Hammer et al., Phys. Plasmas, 6, 2129]. We show that the relationship between measured pinch power, hohlraum temperature, and secondary hohlraum coupling ("hohlraurn energetic") is well understood from O-D semi-analytic, 2-D viewfactor, and 2-D radiation magneto-hydrodynamics models. These experiments have shown the highest x-ray powers coupled to any Z-pjnch driven secondary (2655 TW), indicating the concept could scale to fusion yields of 400 MJ. We have also developed a novel, single-sided power feed, double-pinch driven secondary that meets the pinch simultaneity requirements for polar radiation symmetry. This source wjll perrnjt investigation of the pinch power balance and hohh-aum geometry requirements for ICF reIevant secondary radiation symmetry, leading to a capsule implosion capability on the Z accelerator [R. B.Spielman. er al.. Phys. Plasmas. 5,2105Plasmas. 5, (1998].
2. Many of the results were obtained by using Infinite rather than semi-Infinite geom etries. This was done either to simplify the measurement or to facilitate compari son with Spencer's early calculations. In any case, the semi-infinite geometry is of more practice! importance, 3. In the caae of semi-Infinite geometries, there are very little data for electron energies leas than 1.0 MeV for nonnormal incidence, and for multlalab media, 4. Spatial resolution near the surface of aemi-Infinite geometries Is poor, especially for hlgh-atomic-numbcr media. 0,3 a.4 as a* FRACTION OF A ftCAIf RANGE Figure 1.1, Comparison of Experimental Measurements and Theoretical Predictions of Energy Deposition Profiles in Seml-Infinlte Aluminum by Normally Incident 0. 5-MeV Electrons
We present observations for 20-MA wire-array z pinches of an extended wire ablation period of 57%+/-3% of the stagnation time of the array and non-thin-shell implosion trajectories. These experiments were performed with 20-mm-diam wire arrays used for the double- z -pinch inertial confinement fusion experiments [M. E. Cuneo, Phys. Rev. Lett. 88, 215004 (2002)] on the Z accelerator [R. B. Spielman, Phys. Plasmas 5, 2105 (1998)]. This array has the smallest wire-wire gaps typically used at 20 MA (209 microm ). The extended ablation period for this array indicates that two-dimensional (r-z) thin-shell implosion models that implicitly assume wire ablation and wire-to-wire merger into a shell on a rapid time scale compared to wire acceleration are fundamentally incorrect or incomplete for high-wire-number, massive (>2 mg/cm) , single, tungsten wire arrays. In contrast to earlier work where the wire array accelerated from its initial position at approximately 80% of the stagnation time, our results show that very late acceleration is not a universal aspect of wire array implosions. We also varied the ablation period between 46%+/-2% and 71%+/-3% of the stagnation time, for the first time, by scaling the array diameter between 40 mm (at a wire-wire gap of 524 mum ) and 12 mm (at a wire-wire gap of 209 microm ), at a constant stagnation time of 100+/-6 ns . The deviation of the wire-array trajectory from that of a thin shell scales inversely with the ablation rate per unit mass: f(m) proportional[dm(ablate)/dt]/m(array). The convergence ratio of the effective position of the current at peak x-ray power is approximately 3.6+/-0.6:1 , much less than the > or = 10:1 typically inferred from x-ray pinhole camera measurements of the brightest emitting regions on axis, at peak x-ray power. The trailing mass at the array edge early in the implosion appears to produce wings on the pinch mass profile at stagnation that reduces the rate of compression of the pinch. The observation of precursor pinch formation, trailing mass, and trailing current indicates that all the mass and current do not assemble simultaneously on axis. Precursor and trailing implosions appear to impact the efficiency of the conversion of current (driver energy) to x rays. An instability with the character of an m = 0 sausage grows rapidly on axis at stagnation, during the rise time of pinch power. Just after peak power, a mild m = 1 kink instability of the pinch occurs which is correlated with the higher compression ratio of the pinch after peak power and the decrease of the power pulse. Understanding these three-dimensional, discrete-wire implosion characteristics is critical in order to efficiently scale wire arrays to higher currents and powers for fusion applications.
The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state (EOS) experiments at pressures up to 10Mbar in aluminum. Development of multidimensional radiation-magnetohydrodynamic codes, coupled with more accurate material models (e.g., quantum molecular dynamics calculations with density functional theory), has produced synergy between validating the simulations and guiding the experiments. Z is now routinely used to drive ICF capsule implosions (focusing on implosion symmetry and neutron production) and to perform HEDP experiments (including radiation-driven hydrodynamic jets, EOS, phase transitions, strength of materials, and detailed behavior of z-pinch wire-array initiation and implosion). This research is performed in collaboration with many other groups from around the world. A five year project to enhance the capability and precision of Z, to be completed in 2007, will result in x-ray energies of nearly 3MJ at x-ray powers >300TW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.