Longitudinal spray distribution is mainly affected by the horizontal speed variations of the nozzles. Manufacturers classically try to reduce unwanted nozzles movements using horizontal boom suspension but these methods have performance and price limitations.This paper describes a spray controller aiming to compensate the effect of the horizontal boom movements on the spray deposits homogeneity. The controller is based on three main components: a control law describing the relationship between nozzle speed, nozzle flow and spray deposit; a real time measurement of the boom horizontal speed variations using micro-machined capacitive accelerometers, and Pulse Width Modulation (PWM) nozzle flow actuators. To assess the feasibility of such a controller, a single nozzle prototype was developed and tested in the laboratory, using a nigrosine solution. Spray coverage was measured using image analysis for field representative nozzle speed variations. The spray coverage uniformity using the controller showed about 51% compensation of the variations observed without it.
-Induction Motor (IM) has several desirable features for high performance adjustablespeed operation. This paper presents the design of a robust controller for vector control induction motor drive performances improvement. Proposed predictive speed controller, which is aimed to guarantee the stability of the closed loop, is based on the Poisson-Laguerre (PL) models for the association vector control drive and the induction motor; without necessity of any mechanical parameter, and requires only two control parameters to ensure implicitly the integrator effect on the steady state error, load torque disturbances rejection and anti-windup effect. In order to improve robustness, insensitivity against external disturbances and preserve desired performance, adaptive control is added with the aim to ensure an online identification of controller parameters through an online PL models identification. The proposed control is compared with the conventional approach using PI controller. Simulation with MATLAB/SIMULINK software and experimental results for a 1kW induction motor using a dSPACE system with DS1104 controller board are carried out to show the improvement performance.
The goal of this study was to figure out how to regulate an induction motor in a hybrid electric vehicle. Conventional combined vector and direct control induction motors take advantage of the advantages of vector control and direct torque control. It is also a method that avoids some of the difficulties in implementing both of the two control methods. However, for this method of control, the statoric current has a great wealth of harmonic components which, unfortunately, results in a strong undulation of the torque regardless of the region speed. To solve this problem, a five-level neutral point clamped inverter was used. Through multilevel inverter operation, the voltage is closer to the sine wave. The speed and torque are then successfully controlled with a lower level of ripple in the torque response which improves system performance. The analysis of this study was verified with simulation in the MATLAB/Simulink interface. The simulation results demonstrate the high performance of this control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.