Protein is an important part of our diet and legumes viz., pigeonpea, chickpea, groundnut, cowpea, blackgram, greengram, etc are very rich source of protein. Among them, pigeonpea consists of about 20 to 22% of seed protein. Minicore collection set is consisted of approximately 10 % of core collection and 1% of entire collection with lot of diversity present in it. Nitrogen content of pigeonpea minicore collection set was estimated using Micro-Kjeldhal method and was ranged from 9.82 to 21.45 %. Based on per cent seed protein, twelve accessions of high and twelve accessions of low seed protein were selected for molecular characterization using 23 simple sequence repeat (SSR) markers. The PowerMarker result depicted that, among twenty three amplified markers, twenty markers generated polymorphism with mean polymorphic information content (PIC), major allele frequency (MAF) and genetic diversity of 0.479, 0.589 and 0.525 respectively. Based on molecular characterization, the dendrogram was constructed using DARwin 5.0 software distinguished the selected accessions of both high and low seed protein separately into different clusters showing diversity The results illustrate the potential of marker systems to distinguish the content of seed protein in pulses crop at genus level. Use of these markers also offers an efficient system for the assessment of genetic diversity within minicore set of pigeonpea.
Background: Mungbean yellow mosaic virus disease is the most devastating disease on Mungbean production. The virus is transmitted by whitefly and can cause yield losses from 75 to 100 per cent. The development of mungbean cultivars resistant to both virus and its vector is considered as one of the most desirable means of managing the disease as it is environmentally safe and highly efficient. The selection of resistant genotypes in conventional methods is complex and time consuming. Hence, the use of molecular markers linked with resistance genes is powerful as it hastens the breeding programmes. The current study was aimed to develop mapping population and to validate molecular markers associated with Mungbean yellow mosaic virus (MYMV). Methods: The present investigation was carried out with 260 F2 individuals that were derived from crossing DGGV-2 and IPM 2-14 during Kharif-2017 at Main Agril Research Station, UAS, Dharwad. Hybrid seeds of this cross were harvested individually and sown during rabi 2017 along with the two parents, as checks for distinguishing the true hybrids. Hybridity of F1s was confirmed through molecular marker analysis and the true F1s were selfed to raise the F2 generation. Result: Of the 24 previously reported simple sequence repeat markers used for detecting the polymorphism, two markers viz., CEDG305 and CEDG115 were found to be polymorphic between DGGV-2 and IPM-2-14. Two hundred and sixty F2 plants segregated in the ratio of 3 S:1 R (202 susceptible: 58 resistant) as phenotypic and 1: 2 :1 as genotypic ratio implying that single recessive gene controlled resistance. Single marker analysis revealed that the molecular markers CEDG305 and CEDG115 were associated with MYMV resistance with a phenotypic variance of 24.5 and 10.3 per cent respectively.
The present work was conducted to study the genetic variation and identification of microsatellite markers linked to rust resistance in groundnut. An F 6 mapping population and three backcross populations (BC 1 F 4 , BC 2 F 3 and BC 3 F 2 ) were developed from a cross between the susceptible parent GPBD-5 and resistant parent GPBD-4. There were highly significant differences among recombinants for reaction to rust. A little difference was observed between PCV and GCV for reaction to rust. High heritability coupled with high genetic advance as per cent of mean was observed for reaction to rust in F 6 , and backcross populations. Bulk segregant analysis in the segregating population of GPBD-5 x GPBD-4 indicated TC5A06 to be putatively linked to rust resistance i.e., single marker analysis (SMA). This marker can be used in marker assisted selection for rust resistance in groundnut improvement program.
A field experiment was conducted at Main Agricultural Research Station, Dharwad during rainy season of 2015 and 2016 to study the effect of planting pattern and phosphorus management on production and profitability of intercropping system of mungbean and pigeonpea. The experiment was laid out in split plot design with three replications and eight treatments. Among them, four planting patterns [sole pigeonpea, mungbean + pigeonpea 1:3 (120 cm x 20 cm), mungbean + pigeonpea 1:2 (90 cm x 20 cm) and mungbean + pigeonpea 2:2 (90 cm x 20 cm)] were main plot treatments and two phosphorus levels (P2O5 @ 50 kg ha-1 and P2O5 @ 75 kg ha-1) were sub plot treatments. Based on pooled data the results revealed that, the significantly higher mungbean seed yield (424 kg ha-1) was recorded with application of 75 kg P2O5 as compared to 50 kg P2O5 ha-1. Whereas, in planting pattern, sole mungbean recorded significantly higher seed yield (757 kg ha-1) as compared to all other intercropping systems. Yield advantage indices and net returns were significantly higher in pigeonpea + mungbean (1:3) with 75 kg P2O5 ha-1 as compared to other treatments. This study indicated the need of fifty per cent higher dose of P2O5 for the pigeonpea and mungbean intercropping system (1:3) in northern transition zone of Karnataka.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.