a b s t r a c tThe state of the art tools to assess the efficiency of the wave energy converters comprise the boundary element method (BEM) codes which are based on the potential linear approach whereas computational fluid dynamics (CFD) is still considered to be relatively computationally expensive. An attempt to enlarge the scope of the state of the art computational tools for wave energy converter applications is made in order to account for the viscous effects. This is achieved via the viscous damping term of the Morison equation which relies on a coefficient C d -to be estimated prior force calculation.The state of the art wave to wire model together with additional viscous term is termed as potential time domain viscous model and is employed for evaluation of the power efficiency of a generic surging type wave energy conversion system. Finally a comparison of CFD and the viscous time domain model is conducted which concludes that the Morison equations' drag term does offer an improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.