This paper presents the findings from using several commercial computational fluid dynamics codes in a joint numerical and experimental project to simulate WRASPA, a new wave energy converter (WEC) device. A series of fully 3D non-linear simulations of WRASPA are presented. Three commercial codes STAR-CCM, CFX and FLOW-3D are considered for simulating the WRASPA device and final results are presented based on the use of Flow-3D. Results are validated by comparison to experimental data obtained from small scale tank tests undertaken at Lancaster University (LU). The primary aim of the project is to use numerical simulation to optimize the collector geometry for power production over a range of likely wave climates. A secondary aim is to evaluate the ability of commercial codes to simulate rigid body motion in linear and non-linear wave climates in order to choose the optimal code with respect to compute speed and ease of problem setup. Issues relating to the ability of a code in terms of numerical dissipation of waves, wave absorption, wave breaking, grid generation and moving bodies will all be discussed. The findings of this paper serve as a basis for an informed choice of commercial package for such simulations. However the capability of these commercial codes is increasing with every new release.
a b s t r a c tThe state of the art tools to assess the efficiency of the wave energy converters comprise the boundary element method (BEM) codes which are based on the potential linear approach whereas computational fluid dynamics (CFD) is still considered to be relatively computationally expensive. An attempt to enlarge the scope of the state of the art computational tools for wave energy converter applications is made in order to account for the viscous effects. This is achieved via the viscous damping term of the Morison equation which relies on a coefficient C d -to be estimated prior force calculation.The state of the art wave to wire model together with additional viscous term is termed as potential time domain viscous model and is employed for evaluation of the power efficiency of a generic surging type wave energy conversion system. Finally a comparison of CFD and the viscous time domain model is conducted which concludes that the Morison equations' drag term does offer an improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.