Electromigration in Cu Damascene lines with bamboo-like grain structures, either capped with Ta/TaN, SiNx, SiCxNyHz layers, or without any cap, was investigated. A thin Ta/TaN cap on top of the Cu line surface significantly improves electromigration lifetime when compared with lines without a cap and with lines capped with SiNx or SiCxNyHz. The activation energy for electromigration increased from 0.87 eV for lines without a cap to 1.0–1.1 eV for samples with SiNx or SiCxNyHz caps and to 1.4 eV for Ta/TaN capped samples.
We demonstrate the potential for ultrathin aluminum-oxide films as alternate gate dielectrics for Si complementary metal–oxide–semiconductor technology. Films are deposited in ultrahigh vacuum utilizing atomic beams of aluminum and oxygen on Si(100) surfaces. We show device-quality Si(100)/Al2O3 interfaces with interfacial trap densities in the 1010 cm−2 eV−1 range, and with leakage current densities five orders of magnitude lower than what is observed in SiO2 insulators at the same equivalent electrical thickness. As-grown films possess an amorphous-to-microcrystalline structure, depending upon the deposition temperature, and any interfacial layers between the Si(100) and Al2O3 layer are <∼0.5 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.