▪ Abstract The increasingly rapid transition of the electronics industry to high-density, high-performance multifunctional microprocessor Si technology has precipitated migration to new materials alternatives that can satisfy stringent requirements. One of the recent innovations has been the substitution of copper for the standard aluminum-copper metal wiring in order to decrease resistance and tailor RC delay losses in the various hierarchies of the wiring network. This has been accomplished and the product shipped only since the fall of 1998, after more than a decade of intensive development. Critical fabrication innovations include the development of an electroplating process for the copper network, dual-damascence chem-mech polishing (CMP), and effective liner material for copper diffusion barrier and adhesion promotion. The present copper technology provides improved current-carrying capability by higher resistance to electromigration, no device contamination by copper migration, and the performance enhancement analytically predicted. This success of the shift to copper will accelerate the industry movement to finer features and more complex interconnect structures with sufficient device density and connectivity to integrate full systems on chips. The next innovation will be the introduction of low-dielectric constant material that, in combination with copper, will create added excitement as the industry learns how to utilize this new capability.
In 1859 Michael Faraday postulated that a thin film of liquid covers the surface of ice—even at temperatures well below freezing. Neglected for nearly a century, the dynamics of ice surfaces has now grown into an active research topic.
We have studied the kinetics and mechanism of oxidation of SiGe alloys deposited epitaxially onto Si substrates by low-temperature chemical vapor deposition. Ge is shown to enhance oxidation rates by a factor of about 3 in the linear regime, and to be completely rejected from the oxide so that it piles up at the SiO2/SiGe interface. We demonstrate that Ge plays a purely catalytic role, i.e., it enhances the reaction rate while remaining unchanged itself. Electrical properties of the oxides formed under these conditions are presented, as well as microstructures of the oxide/substrate, Ge-enriched/SiGe substrate, and SiGe/Si substrate interfaces, and x-ray photoemission studies of the early stages of oxidation. Possible mechanisms are discussed and compared with oxidation of pure silicon.
Electromigration in 0.15–10 μm wide and 0.3 μm thick Cu lines deposited by physical vapor deposition has been investigated using both resistance and edge displacement techniques in the sample temperature range 255–405 °C. For wide polycrystalline lines (>1 μm), the dominant diffusion mechanism is a mixture of grain boundary and surface diffusion, while in narrow lines (<1 μm) the dominant mechanism is surface transport. The activation energy for grain-boundary transport is approximately 0.2 eV higher than that of surface transport.
We identified a family of materials which can be directly electroplated with Cu in acidic plating baths commonly found in the microelectronics industry. Details are presented illustrating a number of important properties of the electroplated Cu/linear material system. These include the adhesion of the plated film to liner material, the recrystallization behavior of the plated film, the texture of the plated film, and the resistivity of the plated film after high-temperature anneals. Finally, an example is presented illustrating the direct plating of Cu across an 8 in. wafer without the use of a Cu seed layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.