We have studied the structural and morphological properties of the triple complex dioleoyl phosphatidylcholine (DOPC)-DNA-Mn2+ by means of synchrotron x-ray diffraction and freeze-fracture transmission electron microscopy. This complex is formed in a self-assembled manner when water solutions of neutral lipid, DNA, and metal ions are mixed, which represents a striking example of supramolecular chemistry. The DNA condensation in the complex is promoted by the metal cations that bind the polar heads of the lipid with the negatively charged phosphate groups of DNA. The complex is rather heterogeneous with respect to size and shape and exhibits the lamellar symmetry of the L(c)(alpha) phase: the structure consists of an ordered multilamellar assembly similar to that recently found in cationic liposome-DNA complexes, where the hydrated DNA helices are sandwiched between the liposome bilayers. The experimental results show that, at equilibrium, globules of the triple complex in the L(c)(alpha) phase coexist with globules of multilamellar vesicles of DOPC in the L(alpha) phase, the volume ratio of the two structures being dependent on the molar ratio of the three components DOPC, DNA, and Mn2+. These complexes are of potential interest for applications as synthetically based nonviral carriers of DNA vectors for gene therapy.
In dental districts, successful bone regeneration using biphasic calcium phosphate materials was recently explored. The present study aimed to perform a comparative study between 3D-printed scaffolds produced by laser light stereo-lithography (SLA) and traditionally sintered biphasic calcium phosphate scaffolds by an integrated morphological, morphometric and mechanical analysis. Methods: Biphasic calcium phosphate (30% HA/70% β-TCP) samples, produced by SLA-3D-printing or by traditional sintering methods, were tested. The experimental sequence included: (1) Microtomography (microCT) analyses, to serve as control-references for the 3D morphometric analysis; (2) loading tests in continuous mode, with compression up to fracture, to reconstruct their mechanical characteristics; and (3) microCT of the same samples after the loading tests, for the prediction of the morphometric changes induced by compressive loading of the selected materials. All the biomaterials were also studied by complementary scanning electron microscopy to evaluate fracture regions and surfaces. Results: The characterization of the 3D mineralized microarchitecture showed that the SLA-3D-printed biomaterials offer performances comparable to and in some cases better than the traditionally sintered ones, with higher mean thickness of struts and pores. Interestingly, the SLA-3D-printed samples had a higher ultimate strength than the sintered ones, with a smaller plastic region. Moreover, by SEM observation, it was observed that fractures in the SLA-3D-printed samples were localized in the structure nodes or on the external shells of the rods, while all the traditionally sintered samples revealed a ductile fracture surface. Conclusions: The reduction of the region of plastic deformation in the SLA-3D-printed samples with respect to traditionally sintered biomaterials is expected to positively influence, in vivo, the cell adhesion. Both microCT and SEM imaging revealed that the studied biomaterials exhibit a structure more similar to human jaw than the sintered biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.