Very low bit rate image coding is an important problem regarding applications such as storage on low memory devices or streaming data on the internet. The state of the art in image compression is to use 2-D wavelets. The advantages of wavelet bases lie in their multiscale nature and in their ability to sparsely represent functions that are piecewise smooth. Their main problem on the other hand, is that in 2-D wavelets are not able to deal with the natural geometry of images, i.e they cannot sparsely represent objects that are smooth away from regular submanifolds. In this paper we propose an approach based on building a sparse representation of images in a redundant geometrically inspired library of functions, followed by suitable coding techniques. Best N-term nonlinear approximations in general dictionaries is, in most cases, a NP-hard problem and sub-optimal approaches have to be followed. In this work we use a greedy strategy, also known as Matching Pursuit to compute the expansion. Finally the last step in our algorithm is an enhancement layer that encodes the residual image: in our simulation we have used a genuine embedded wavelet codec.
Low bit rate image coding is an important problem regarding applications such as storage on low memory devices or streaming data on the internet. The state of the art in image compression is to use 2-D wavelets. The advantages of wavelet bases lie in their multiscale nature and in their ability to sparsely represent functions that are piecewise smooth. Their main problem on the other hand, is that in 2-D wavelets are not able to deal with the natural geometry of images, i.e they cannot sparsely represent objects that are smooth away from regular submanifolds. In this paper we propose an approach based on building a sparse representation of the edge part of images in a redundant geometrically inspired library of functions, followed by suitable coding techniques. Best N-terms non-linear approximations in general dictionaries is, in most cases, a NP-hard problem and sub-optimal approaches have to be followed. In this work we use a greedy strategy, also known as Matching Pursuit to compute the expansion. The residual, that we suppose to be the smooth and texture part, is then coded using wavelets. A rate distortion optimization procedure chooses the number of functions from the redundant dictionary and the wavelet basis.
This paper presents a Rate-Distortion analysis for a simple horizon edge image model. A quadtree with anisotropy and rotation is performed on this kind of image, giving a toy model for a non-linear adaptive coding technique, and its Rate-Distortion behavior is studied. The effect of refining the quadtree decomposition is also analyzed.
Matching Pursuit decomposes a signal into a linear expansion of functions selected from a redundant dictionary, isolating the signal structures that are coherent with respect to a given dictionary. In this paper we focus on the Matching Pursuit representation of the displaced frame difference (dfd). In particular, we introduce a new dictionary for Matching Pursuit that efficiently exploits the signal structures of the dfd. We also propose a fast strategy to find the atoms exploiting the max of the absolute value of the error in the motion predicted image and the convergence of the MSE with the rotation of the atoms. Results show that the fast strategy is quite robust when compared to exhaustive search techniques and it improves the results of a suboptimal search strategy based on a genetic algorithm.
This paper explores a novel approach for ventricular and atrial activities estimation in electrocardiogram (ECG) signals, based on sparse source separation. Sparse decompositions of ECG over signal-adapted multi-component dictionaries can lead to natural separation of its components. In this work, dictionaries of functions adapted to ventricular and atrial activities are respectively defined. Then, the weighted orthogonal matching pursuit algorithm is used to unmix the two components of ECG signals. Despite the simplicity of the approach, results are very promising, showing the capacity of the algorithm to generate realistic estimations of atrial and ventricular activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.