Very low bit rate image coding is an important problem regarding applications such as storage on low memory devices or streaming data on the internet. The state of the art in image compression is to use 2-D wavelets. The advantages of wavelet bases lie in their multiscale nature and in their ability to sparsely represent functions that are piecewise smooth. Their main problem on the other hand, is that in 2-D wavelets are not able to deal with the natural geometry of images, i.e they cannot sparsely represent objects that are smooth away from regular submanifolds. In this paper we propose an approach based on building a sparse representation of images in a redundant geometrically inspired library of functions, followed by suitable coding techniques. Best N-term nonlinear approximations in general dictionaries is, in most cases, a NP-hard problem and sub-optimal approaches have to be followed. In this work we use a greedy strategy, also known as Matching Pursuit to compute the expansion. Finally the last step in our algorithm is an enhancement layer that encodes the residual image: in our simulation we have used a genuine embedded wavelet codec.
Low bit rate image coding is an important problem regarding applications such as storage on low memory devices or streaming data on the internet. The state of the art in image compression is to use 2-D wavelets. The advantages of wavelet bases lie in their multiscale nature and in their ability to sparsely represent functions that are piecewise smooth. Their main problem on the other hand, is that in 2-D wavelets are not able to deal with the natural geometry of images, i.e they cannot sparsely represent objects that are smooth away from regular submanifolds. In this paper we propose an approach based on building a sparse representation of the edge part of images in a redundant geometrically inspired library of functions, followed by suitable coding techniques. Best N-terms non-linear approximations in general dictionaries is, in most cases, a NP-hard problem and sub-optimal approaches have to be followed. In this work we use a greedy strategy, also known as Matching Pursuit to compute the expansion. The residual, that we suppose to be the smooth and texture part, is then coded using wavelets. A rate distortion optimization procedure chooses the number of functions from the redundant dictionary and the wavelet basis.
Hybrid video coding combines together two stages: first, motion estimation and compensation predict each frame from the neighboring frames, then the prediction error is coded, reducing the correlation in the spatial domain. In this work, we focus on the latter stage, presenting a scheme that profits from some of the features introduced by the standard H.264/AVC for motion estimation and replaces the transform in the spatial domain. The prediction error is so coded using the matching pursuit algorithm which decomposes the signal over an appositely designed bidimensional, anisotropic, redundant dictionary. Comparisons are made among the proposed technique, H.264, and a DCT-based coding scheme. Moreover, we introduce fast techniques for atom selection, which exploit the spatial localization of the atoms. An adaptive coding scheme aimed at optimizing the resource allocation is also presented, together with a rate-distortion study for the matching pursuit algorithm. Results show that the proposed scheme outperforms the standard DCT, especially at very low bit rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.