Mercury's quadrangle H02 'Victoria' is located in the planet's northern hemisphere and lies between latitudes 22.5°N and 65°N, and between longitudes 270°E and 360°E. This quadrangle covers 6.5% of the planet's surface with a total area of almost 5 million km 2 . Our 1:3,000,000-scale geologic map of the quadrangle was produced by photo-interpretation of remotely sensed orbital images captured by the MESSENGER spacecraft. Geologic contacts were drawn between 1:300,000 and 1:600,000 mapping scale and constitute the boundaries of intercrater, intermediate and smooth plains units; in addition, three morpho-stratigraphic classes of craters larger than 20 km were mapped. The geologic map reveals that this area is dominated by Intercrater Plains encompassing some almost-coeval, probably younger, Intermediate Plains patches and interrupted to the north-west, north-east and east by the Calorian Northern Smooth Plains. This map represents the first complete geologic survey of the Victoria quadrangle at this scale, and an improvement of the existing 1:5,000,000 Mariner 10-based map, which covers only 36% of the quadrangle. ARTICLE HISTORY
By using images acquired by the Mercury dual imaging system (MDIS) on-board the MESSENGER spacecraft during 2008-2015 and available DTMs, a new 1:3,000,000-scale geological map of the Shakespeare quadrangle of Mercury has been compiled. The quadrangle is located between latitudes 22.5°-65.0°N and longitudes 270.0°-180.0°E and covers an area of about 5 million km 2. The mapping was based on photo-interpretation performed on a reference monochromatic basemap of reflectance at 166 m/pixel resolution. The geological features were digitized within a geographic information system with a variable mapping scale between 1:300,000 and 1:600,000. This quadrangle is characterized by the occurrence of three main types of plains materials and four basin materials (pertaining to the Caloris basin), whose geologic boundaries have been here redefined compared to the previous map of the quadrangle. The stratigraphic relationships between the craters were based on three main degradation morphologies. Furthermore, previously unmapped tectonic landforms were detected and interpreted as thrusts or wrinkle ridges.
a b s t r a c tIntegrated geological, geodetic and marine geophysical data provide evidence of active deformation in south-western Sicily, in an area spatially coincident with the macroseismic zone of the destructive 1968 Belice earthquake sequence. Even though the sequence represents the strongest seismic event recorded in Western Sicily in historical times, focal solutions provided by different authors are inconclusive on possible faulting mechanism, which ranges from thrusting to transpression, and the seismogenic source is still undefined. Interferometric (DInSAR) observations reveal a differential ground motion on a SW-NE alignment between Campobello di Mazara and Castelvetrano (CCA), located just west of the maximum macroseismic sector. In addition, new GPS campaign-mode data acquired across the CCA alignment documents NW-SE contractional strain accumulation. Morphostructural analysis allowed to associate the alignment detected through geodetic measurements with a topographic offset of Pleistocene marine sediments. The on-land data were complemented by new high-resolution marine geophysical surveys, which indicate recent contraction on the offshore extension of the CCA alignment. The discovery of archaeological remains displaced by a thrust fault associated with the alignment provided the first likely surface evidence of coseismic and/or aseismic deformation related to a seismogenic source in the area. Results of the integrated study supports the contention that oblique thrusting and folding in response to NW-SE oriented contraction is still active. Although we are not able to associate the CCA alignment to the 1968 seismic sequence or to the historical earthquakes that destroyed the ancient Greek city of Selinunte, located on the nearby coastline, our result must be incorporated in the seismic hazard evaluation of this densely populated area of Sicily.
BepiColombo has a larger and in many ways more capable suite of instruments relevant for determination of the topographic, physical, chemical and mineralogical properties of Mercury’s surface than the suite carried by NASA’s MESSENGER spacecraft. Moreover, BepiColombo’s data rate is substantially higher. This equips it to confirm, elaborate upon, and go beyond many of MESSENGER’s remarkable achievements. Furthermore, the geometry of BepiColombo’s orbital science campaign, beginning in 2026, will enable it to make uniformly resolved observations of both northern and southern hemispheres. This will offer more detailed and complete imaging and topographic mapping, element mapping with better sensitivity and improved spatial resolution, and totally new mineralogical mapping. We discuss MESSENGER data in the context of preparing for BepiColombo, and describe the contributions that we expect BepiColombo to make towards increased knowledge and understanding of Mercury’s surface and its composition. Much current work, including analysis of analogue materials, is directed towards better preparing ourselves to understand what BepiColombo might reveal. Some of MESSENGER’s more remarkable observations were obtained under unique or extreme conditions. BepiColombo should be able to confirm the validity of these observations and reveal the extent to which they are representative of the planet as a whole. It will also make new observations to clarify geological processes governing and reflecting crustal origin and evolution. We anticipate that the insights gained into Mercury’s geological history and its current space weathering environment will enable us to better understand the relationships of surface chemistry, morphologies and structures with the composition of crustal types, including the nature and mobility of volatile species. This will enable estimation of the composition of the mantle from which the crust was derived, and lead to tighter constraints on models for Mercury’s origin including the nature and original heliocentric distance of the material from which it formed.
The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the Bepi-Colombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will pro-The BepiColombo mission to Mercury Edited by Johannes Benkhoff, Go Murakami and Ayako Matsuoka B G. Cremonese
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.