Available information supports the dominance of the proximal intestine in inorganic phosphate (Pi) Pi. This approach allows the analysis of the mechanism and the regulation of Pi absorption under more authentic in vivo conditions. (J. Clin. Invest. 1993. 91:915-922.)
Ileum displays little active transcellular calcium (Ca2+) absorption but is credited with the bulk of Ca2+ absorbed in vivo. We examined the effect of taurodeoxycholic acid (TDC, 2 mM), a bile salt, on mannitol (MN, a marker of intercellular solute traffic) and Ca2+ fluxes in rat ileum. In the absence of electrochemical gradients between the mucosal (M) and serosal (S) bathing media in an Ussing chamber, net flux (Jnet) was observed in the S-to-M direction for both MN and Ca2+, i.e., the unidirectional secretory S-to-M flux (Js-->m) exceeded the absorptive M-to-S flux (Jm-->s). Mucosal TDC caused simultaneous increase in transepithelial conductance and Js-->m for both MN and Ca2+. This was followed by even greater increases in MN and Ca2+ Jm-->s, so that ultimately Jm-->s equaled Js-->m in each case. In control tissue, Js-->m for Ca2+ appeared to permeate exclusively through the intercellular MN pathway while part of Jm-->s for Ca2+ appeared to traverse through a non-MN route. After the TDC-induced increase in intercellular solute permeability, both Ca2+ fluxes appeared to traverse through the aqueous MN conduit. During the postprandial state, the presence of bile salts and the relative abundance of Ca2+ in ileal lumen can cause bulk Ca2+ absorption through the intercellular pathway.
Chronic lead exposure may cause hypertension in normotensive rats. This hypertensinogenic effect has been attributed to perturbations in the renin-angiotensin axis, the contractile response of the vascular smooth muscle, or the intracellular Ca2+ homeostasis as a consequence of the inhibition of Na(+)-K(+)-ATPase activity. In this study we examined the short-term effect of lead exposure on blood pressure, plasma renin activity, vascular contractility, and renal Na(+)-K(+)-ATPase activity and abundance in the spontaneously hypertensive rat. Our data indicate that modest lead exposure caused blood pressure elevation within two weeks in this rat strain that is genetically susceptible to the development of hypertension. This rapid blood pressure-elevating effect did not appear to depend on the mechanisms described in hypertension associated with more chronic lead exposure listed above. This acute model provides an additional approach to the study of lead-induced hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.