Alkali-resistant osmabenzene [(SCN)2(PPh3)2Os{CHC(PPh3)CHCICH}] (2) can undergo nucleophilic aromatic substitution with MeOH or EtOH to give cine-substitution products [(SCN)2(PPh3)2Os{CHC(PPh3)CHCHCR}] (R=OMe (3), OEt(4)) in the presence of strong alkali. However, the reactions of compound 2 with various amines, such as n-butylamine and aniline, afford five-membered ring species, [(SCN)2(PPh3)2Os{CH=C(PPh3)CH=C(CH=NHR')}] (R'=nBu(8), Ph(9)), in addition to the desired cine-substitution products, [(SCN)2(PPh3)2Os{CHC(PPh3)CHCHC(NHR')}] (R'=nBu(6), Ph(7)), under similar reaction conditions. The mechanisms of these reactions have been investigated in detail with the aid of isotopic labeling experiments and density functional theory (DFT) calculations. The results reveal that the cine-substitution reactions occur through nucleophilic addition, dissociation of the leaving group, protonation, and deprotonation steps, which resemble the classical "addition-of-nucleophile, ring-opening, ring-closure" (ANRORC) mechanism. DFT calculations suggest that, in the reaction with MeOH, the formation of a five-membered metallacycle species is both kinetically and thermodynamically less favorable, which is consistent with the experimental results that only the cine-substitution product is observed. For the analogous reaction with n-butylamine, the pathway for the formation of the cine-substitution product is kinetically less favorable than the pathway for the formation of a five-membered ring species, but is much more thermodynamically favorable, again consistent with the experimental conversion of compound 8 into compound 6, which is observed in an in situ NMR experiment with an isolated pure sample of 8.
η-Iminoketenyl species have often been postulated as the intermediates in nucleophile-induced carbyne-isocyanide C-C coupling processes. However, such species are elusive. Here we report direct formation of η-iminoketenyl complexes from reactions of metallapentalyne with isocyanides. Our studies show that steric effects of N-substituents of the isocyanides play an important role in the stability of the three-membered metallacycles of the η-iminoketenyl complexes. Sterically bulky isocyanides, such as tert-butyl or 1-adamantyl isocyanides, inhibit bending at the isocyanide nitrogen atoms, a requirement for formation of η-iminoketenyl structures. Reactions of metallapentalyne with excess isocyanide allow the metal-bridged metallaindene derivativesto be isolated as a result of the isocyanide insertion into the M-C σ bond of metallapentalyne.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.