Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTUltraluminous X-ray sources (ULXs) with luminosities lying between ∼3 × 10 39 and 2 × 10 40 erg s −1 represent a contentious sample of objects as their brightness, together with a lack of unambiguous mass estimates for the vast majority of the central objects, leads to a degenerate scenario where the accretor could be a stellar remnant (black hole or neutron star) or intermediate-mass black hole (IMBH). Recent, high-quality observations imply that the presence of IMBHs in the majority of these objects is unlikely unless the accretion flow somehow deviates strongly from expectation based on objects with known masses. On the other hand, physically motivated models for supercritical inflows can re-create the observed X-ray spectra and their evolution, although have been lacking a robust explanation for their variability properties. In this paper, we include the effect of a partially inhomogeneous wind that imprints variability on to the X-ray emission via two distinct methods. The model is heavily dependent on both inclination to the line of sight and mass accretion rate, resulting in a series of qualitative and semiquantitative predictions. We study the time-averaged spectra and variability of a sample of well-observed ULXs, finding that the source behaviours can be explained by our model in both individual cases as well as across the entire sample, specifically in the trend of hardness-variability power. We present the covariance spectra for these sources for the first time, which shed light on the correlated variability and issues associated with modelling broad ULX spectra.Key words: accretion, accretion discs -X-rays: binaries. I N T RO D U C T I O NUltraluminous X-ray sources (ULXs) have been widely observed in the local Universe, with inferred isotropic luminosities above 10 39 erg s −1 (Roberts 2007;Feng & Soria 2011). Those below ∼3 × 10 39 erg s −1 can be readily associated with accretion on to stellar mass black holes (BHs) (∼10 M ) accreting close to or at their Eddington limit (see Sutton, Roberts & Middleton 2013, and references therein). There is now strong evidence to support this assertion, with the discovery of extremely bright ballistic jets from a ULX in M31 Middleton, Miller-Jones & Fender 2014b), which unambiguously links the flow with Eddington rate accretion (Fender, Belloni & Gallo 2004), and the first dynamical mass measurement of the compact object in a ULX, from M101 E-mail: mjm@ast.cam.ac.uk ULX-1 (Liu et al. 2013). Ob...
Accreting stellar-mass black holes often show a 'Type-C' quasi-periodic oscillation (QPO) in their X-ray flux, and an iron emission line in their X-ray spectrum. The iron line is generated through continuum photons reflecting off the accretion disk, and its shape is distorted by relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The physical origin of the QPO has long been debated, but is often attributed to Lense-Thirring precession, a General Relativistic effect causing the inner flow to precess as the spinning black hole twists up the surrounding space-time. This predicts a characteristic rocking of the iron line between red and blue shift as the receding and approaching sides of the disk are respectively illuminated. Here we report on XMM-Newton and NuSTAR observations of the black hole binary H 1743-322 in which the line energy varies systematically over the ∼ 4 s QPO cycle (3.70σ significance), as predicted. This provides strong evidence that the QPO is produced by Lense-Thirring precession, constituting the first detection of this effect in the strong gravitation regime. There are however elements of our results harder to explain, with one section of data behaving differently to all the others. Our result enables the future application of tomographic techniques to map the inner regions of black hole accretion disks.
Context. Thanks to the large collecting area (3 × ∼1500 cm 2 at 1.5 keV) and wide field of view (30 across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the detection of up to several hundred X-ray sources, most of which are newly discovered objects. Since XMM-Newton has now been in orbit for more than 15 yr, hundreds of thousands of sources have been detected. Aims. Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision of sources, greater net sensitivity for source detection, and the extraction of spectra and time series for fainter sources, both with better signal-to-noise. Thanks to these enhancements, the quality of the catalogue products has been much improved over earlier catalogues. Furthermore, almost 50% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre to produce a much larger and better quality X-ray source catalogue. Methods. The XMM-Newton Survey Science Centre has developed a pipeline to reduce the XMM-Newton data automatically. Using the latest version of this pipeline, along with better calibration, a new version of the catalogue has been produced, using XMM-Newton X-ray observations made public on or before 2013 December 31. Manual screening of all of the X-ray detections ensures the highest data quality. This catalogue is known as 3XMM. Results. In the latest release of the 3XMM catalogue, 3XMM-DR5, there are 565 962 X-ray detections comprising 396 910 unique X-ray sources. Spectra and lightcurves are provided for the 133 000 brightest sources. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. With the aim of identifying the detections, a cross correlation with 228 catalogues of sources detected in all wavebands is also provided for each X-ray detection. Conclusions. 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products associated with each detection and each source, it is an excellent resource for finding new and extreme objects.Key words. catalogs -astronomical databases: miscellaneous -surveys -X-rays: general Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.The catalogue is available at http://cdsarc.u-strasbg.fr/ viz-bin/VizieR?-meta.foot&-source=IX/46
(2015) 'Diagnosing the accretion ow in ultraluminous X-ray sources using soft X-ray atomic features.', Monthly notices of the Royal Astronomical Society., 454 (3). pp. 3134-3142.Further information on publisher's website: Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
We present results from a study of short‐term variability in 19 archival observations by XMM–Newton of 16 ultraluminous X‐ray sources (ULXs). Eight observations (six sources) showed intrinsic variability with power spectra in the form of either a power‐law or broken power‐law‐like continuum and in some cases quasi‐periodic oscillations (QPOs). The remaining observations were used to place upper limits on the strength of possible variability hidden within. Seven observations (seven sources) yielded upper limits comparable to, or higher than, the values measured from those observations with detectable variations. These represented the seven faintest sources, all with fx < 3 × 10−12 erg cm−2 s−1. In contrast, there are four observations (three sources) that gave upper limits significantly lower than both the values measured from the ULX observations with detectable variations, and the values expected by comparison with luminous Galactic black hole X‐ray binaries (BHBs) and active galactic nuclei (AGN) in the observed frequency bandpass (10−3–1 Hz). This is the case irrespective of whether one assumes characteristic frequencies appropriate for a stellar mass (10 M⊙) or an intermediate mass (1000 M⊙) black hole, and means that in some ULXs the variability is significantly suppressed compared to bright BHBs and AGN. We discuss ways to account for this unusual suppression in terms of both observational and intrinsic effects and whether these solutions are supported by our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.