Significance: Optoacoustic-induced vibrations of the hearing organ can potentially be used for a hearing device. To increase the efficiency of such a hearing device, the conversion of the light energy into vibration energy within each type of irradiated tissue has to be optimized. Aim: To analyze the wavelength-dependency of optoacoustic-induced vibrations within the tympanic membrane (TM), and to define the most efficient and best-suited optical stimulation parameters for a novel auditory prosthesis. Approach: Single nanosecond laser pulses, continuously tunable in a range of visible to nearinfrared, were used to excite the guinea pig TM. The induced vibrations of the hearing organ were recorded at the malleus using a laser Doppler vibrometer. Results: Our results indicate a strong wavelength-dependency of the vibration's amplitude correlating with the superposition of the absorption spectra of the different specific tissue components. Conclusions: We investigated the spectrum of the vibrations of the hearing organ that were induced optoacoustically within a biological membrane embedded in air, in an animal model. First applications for these results can be envisioned for the optical stimulation of the peripheral hearing organ as well as for research purposes.
.
Significance:
Optoacoustic stimulation offers an alternative stimulation strategy for the hearing organ. To serve as the base for a novel auditory prosthesis, the optoacoustic stimulation must be biocompatible and energy-saving.
Aim:
Enhancing the efficiency of optoacoustic stimulation while reducing the energy input in a suited animal model.
Approach:
Optoacoustically induced auditory brainstem responses (oABRs) were recorded after the pulsed laser irradiation of the tympanic membrane (TM) in mice. The results were compared with the ABRs induced through acoustic click stimulation. In addition, self-adhesive absorbing films were applied on the TM before the optoacoustic stimulation to investigate their effect on the resulting ABRs.
Results:
Using an absorbing film on the TM during optical stimulation led to considerably enhanced oABR wave I amplitude values compared with the stimulation of the bare TM. When using our stimulation strategy, we induced oABR waves in the 50% to 60% range of the acoustical stimulation reached with 80-dB SPL click stimuli.
Conclusions:
The mouse model can be used for certain developmental work for an optoacoustic auditory prosthesis. Using absorbing films on the TM during optical stimulation considerably enhances oABR wave I amplitude. Optimization of the stimulation strategy could further enhance the efficiency within biocompatibility margins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.