Genetic investigations of cattle breeds in Western Ukraine are environmentally necessary, as well as they are the most relevant in connection with the formation of rock associations – for example Carpathian Brown. Addition to the study of genetic characteristics of different breeds to be used in agricultural production - it is an attempt to identify in the herd and genetically determined feature, which occurs most frequently. The choice of such economically valuable features determined by modern methods of agriculture research, and basically are chosen herds with such gene fond in which this feature is most typical. The genetic structure was evaluated for the genetically determined polymorphism groups of genetic and biochemical systems. Experiments were conducted on red blood cells and plasma. The blood of animals was taken from the jugular vein in a test tube with heparin. Polymorphism of proteins and enzymes was evaluated using the method of electrophoretic separation of proteins in 13% of starch gels in horizontal chambers with further histochemical staining. Each species is characterized by its own structural features of the genetic structure. According to locus of transferrin breeds can be divided into two groups: with the dominance of allelic variant Tf A (Pintshau, Black and Spotted Holstein, Red and Spotted Holstein) and domination of variant Tf D2 (Symentals, Schwyz, Gray Ukrainian). Animals of Brown Carpathian breed have a large number of heterozygotes Tf AD2 (43%). The group of Schwyz has relatively high heterozygosity (49%). Groups of Black-Spotted and Red- Spotted Holstein are similar. When analyzing the genetic structure for the locus AM-1 can be noted the similarity of samples of animal Pintshau, Schwyz, Carpathian of brown rocks. In animals of Gray Ukrainian breed the frequency of allelic variants display of AM-1 was the highest and amounted to – 0.933. For ceruloplasmin locus significant differences were not found, except Gray Ukrainian breed animals where frequency of display of CP A was quite high and amounted to 0.733 and Simentales where is marked the high level of heterozygosity – 84%. At electrophoretic distillation of washed red blood cells of studied groups of animals were found two phenotypes of purine nucleoside phosphorylase: one is associated with high activity (H), the other with low activity (L).
The article contains generalized literary data on the results of genome research based on molecular genetic methods in connection with the productive qualities of cattle that can be used to accelerate and improve breeding work. The study of the human genome has given impetus to the development of medicine, biotechnology and pharmacogenetics. Similarly, new research on the genome of cattle gives qualitatively different possibilities for using these data in the selection and production of agricultural products, as well as in controlling its quality. Molecular genetic markers inform about the polymorphism of genes and allow to detect individual genes and gene complexes that carry information about a certain feature. Based on such studies, gene pool can be formed with a certain combination. An alternative way of molecular-genetic marking of performance is to study the polymorphism of structural genes, allelic variants which are directly related to the desired phenotypic manifestation, namely: kappa-casein (CSN3), veta-lactaglobulin (BLG), somatotropin (GH), and myostatin (MSTN). Modern breeding work with cattle is associated with the establishment of a connection between the polygenic signs of productivity and the «main» genes of quantitative traits, the polymorphism of which affects the final output of the protein product. As candidate genes that affect lactation productivity in cattle, first of all the genes of milk proteins, in particular kappa-casein, are examined. The gene for the somatotropic hormone (GH), a growth hormone in cattle, is a polypeptide consisting of 191 amino acids and is encoded by a single gene, which is localized in 19 chromosomes. Growth hormone plays a key role in stimulating the synthesis of protein, cell division, and body growth. Myostatin – one of the regulators of skeletal muscle development is the myostatin gene, which refers to a family of transforming growth factors. The gene of myostatin in the Bovine species is localized in chromosome 2 and carries the muscle hypertrophy locus, there is also a homologous fragment of human chromosome 2, where the locus of this gene is limited. The presence of the gene of myostatin, as one of the locus of quantitative traits of beef, can be used as a marker for genetic mapping. After discovering mutations in the gene of the myostatin, they came to the conclusion, that it is not the only gene that controls the growth and muscle mass of animals. Molecular genetic markers allow you to receive information about the polymorphism of genes and to identify individual genes and gene «ensembles» that carry the desired complex of features.
The purposeful creation and use of highly productive animals largely depends on information laid down in their genes that control valuable economic useful features. The actual task is to identify and use marker genes that are responsible for displaying a certain sign of animals, in particular, the level of milk productivity. To create new forms of animals with a combination of high productivity and adaptability to various factors of external influences, for this purpose, for a long time in Ukraine, work was carried out to improve the Simmental cattle using the Red-Spoptted Holstein breed. It was supposed to that the increase in the number of animals with a part of the heredity of Red-Spoptted Holstein to 70–80% will allow to receive herds, which are characterized by good adaptive capacity, fat-dairy, high growth and meat qualities, as well as high milk yield. The searches were carried out on cows (pure-bred Simmentals and between ½ and ¾ in terms of the heredity of the Red-Spoptted Holstein breed), which were divided into groups with different levels of milk productivity for the first lactation (on the milk yield and content of fat in milk). The genetic structure was estimated by genetically determined polymorphism of groups of genetic-biochemical systems. Experiments were conducted on erythrocytes and blood plasma.Blood from animals was taken from a jugular vein in a heparin test tube. Polymorphism of proteins and enzymes was evaluated using a method of electrophoretic protein separation in 13% starch gel in horizontal chambers followed by histochemical staining. The obtained data testify that differences of animals on such parameters of dairy as milk yield for 305 days of the first lactation and the content of fat in milk is accompanied by unequal differentiation of their genetic structures by different genetic-biochemical systems. With the difference in milk yield, the most pronounced changes are observed with the transferrin locus, and in the analysis of groups of animals differing in the fat content of milk – by the AM-1 locus. This suggests that, based on such cases of negative correlations between these features, specific interlocal interactions may be based on different genetic and biochemical systems. It can be argued that the development of such searches may lead to the discovery of characteristic genotypes by a complex of genetic-biochemical systems, closely related to the corresponding complex of economic useful features.
Breeds of farm animals are characterized by the presence of their genetic structure, in particular, the distribution of allelic and genotypic frequencies by individual genetic and biochemical systems. The purpose of our search was to study the genetic frequencies of polymorphic loci of transferrin (TF), amylase (AM), ceruloplasmin (CR), hemoglobin (HB) and purine nucleoside phosphorylase (PN) in Simmental cattle and related breeds (Gray Ukrainian and Charolais), as well as to determine the degree of similarity between the expected loci and actual genotypes. As a result of research it was established that the genetic structure of the studied polymorphic loci of the Simmental breed was closer in animals of the Gray Ukrainian breed. In particular, at the locus of transferrin in individuals of the Gray Ukrainian breed there are alleles TF A, TF D1, TF D2 and TF E, whose genetic frequency was in the range of 0.051–0.603. The frequency of the Tf A allele in all studied breeds of cattle had a slight intergroup fluctuations (0.235–0.244), indicating their genetic similarity to this allele. At the locus of transferrin allele Tf D1 of the breed Ukrainian and Charolais were characterized by a lower frequency, however, according to the Tf D2 allele (frequency 0.603 in both breeds), they outperformed the Simmental breed by 11.7 %. The amylase locus in the studied breeds occurs with the alleles AM B and AM C, and with the allele AM A – is absent. The frequency of the AM B allele was highest in animals of the Gray Ukrainian breed, and in the AM C allele in the Charolais breed. It should be noted the high frequency of the AM B allele (0.910) in the Gray Ukrainian breed, which is due to the large number of BB homozygotes. Among the ceruloplasmin locus, the CP A allele had the highest frequency, and the CP B allele had a slightly lower frequency. In the hemoglobin locus, the frequency of HB A allele expression was the highest compared to other polymorphic systems and was in the range of 0.905–1.000. As for the HB B allele, on the contrary, the frequency of its appearance was much lower: in Simmental animals it was 0.095, in the Charolais breed it was 0.059, and in the Gray Ukrainian breed this allele was not observed. Among the alleles of purine nucleoside phosphoryls, the PN L allele was noted with a high frequency (0.697–0.846). The study of genotypes of genetic and biochemical systems of Simmental breed by loci TF, AM, SR, HB and PN shows that the locus TF, which is represented by the largest number of genotypes (10), was marked by a high degree of similarity between expected and actual genotypes with a significant difference (exception – genotype TF EE). The largest number of animals at this locus had the genotypes TF AD2, TF D1 D2 and TF D2 D2 (8 heads in each group), and the smallest – with genotypes TF AA, TF D1 D1, TF D1 E and TF D2 E (1–2 heads each). With the expected genotypes TF AF and TF EE, their real number was not detected, which indicates high heterozygosity. Amylase polymorphism is appeqred only by alleles AM B and AM C. Homozygous for allele B recorded a slightly larger number – in 23 individuals, while homozygous for allele C – only in 3 individuals, which coincides with the expected data in accordance with 21.690 and 1.690. The ceruloplasmin locus is marked by a slightly higher frequency of allele A, due to homo- (CP AA) and heterozygotes (CP AB), which appeared in 15 animals in both groups. Hemoglobin in the Simmental breed, as in most breeds of cattle, is represented mainly by allele A, and homozygotes of the BB allele are absent. Allele B is appeared in small quantities in a heterozygous state – in 4 individuals. The РN locus is appeared by two alleles (L and H), and there are no heterozygotes on the electrophoresis foregrams. There was a high frequency of the L allele of the PN locus, which is characteristic of breeds of the dairy direction of productivity. The PN H allele, which is characterized by high activity, is somewhat less common in Simmentals (only in 6 individuals). Thus, the study of genetic frequencies of the Simmental breed is necessary for the identification and early determination of the level of productivity of animals. Genetic frequencies of polymorphic loci are necessary for selection work with the breed, and can also be used in the breeding process to accelerate the rate of the breeding process. Searches of the genetic structure of the complex of genetic and biochemical systems are necessary for the research and preservation of the gene fund of local and endangered breeds of cattle.
The concept of «partblood» most are based on assumptions about longing action of genes that control is taken part in polygenic traits productivity and their system of uniform distribution of landed offspring. The literature describes few actual studies of genetic processes that occur in the offspring of crosses purebred animals. In this regard, the task of our study included a comparative analysis of the genetic structure of the source rocks (symentaly, grizzled red–Holstein) and their offspring landed the «share of blood» 1/2 (F1) and 3/4 (F2). Analysis of the genetic structure of all four groups of animals by polymorphic genetic and biochemical systems showed that transferrin locus for the particular animals are different from parental forms. So a group of animals with 1/2 blood (F1) display of high frequency of allelic variant Tf D2 (0,646). According to AM–1 locus in the studied groups manifestation of the highest frequency in the group of animals 1/2 halfblood (F–1) – 0.712 and this group is just as close to a group of purebred symentaliv (0.806). For purynnukleotydfosforylazy locus was found a high frequency of phenotypes at high activity in a group of purebred symentaliv (NP–H – 0,25). Cluster analysis showed that for genetic and biochemical systems group symentaliv (bedrock) form one cluster, and the Local animals (F–1 i F–2), and a group of red Holstein (parent rock) differs from them with a group black and other forms black Holstein, an independent cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.