The issues of forecasting and preventing dynamic phenomena in coal mines, despite decades of research, remain insufficiently studied. The nature of dynamic phenomena is far from being known, and as the depth of mining of coal seams increases, the phenomena become more and more formidable and, as a rule, unpredictable.Most of the dynamic phenomena are related to the stress state of the massif and the peculiarity of its gas saturation, which is partly explained by the state of sedimentary rocks. In sedimentary rocks or crystalline fractured, the number of parameters characterizing the stress state of rocks at depth increases.Studying the dynamic processes of different intensity in the coal rock massifs of the Donets Basin, it was found that the main factors that provoke them should include anomalously high formation pressures, stress state and gas content of the massif.
Purpose. Improving the method for determining the ultimate sorption capacity of coal matter using EPR-spectroscopy (electron paramagnetic resonance) by adjusting the proportionality coefficient between the ultimate sorption capacity of coal and the concentration of paramagnetic centers and the conjugation coefficient in accordance with the degree of coalification. Methodology. The ultimate sorption capacity of the matter was estimated by EPR-spectroscopy, based on the content of paramagnetic centers (PMC) in coal, which are able to come into physical (sorption) interaction with molecules of paramagnetic gas (O2) when the pressure increases. Processing of the research results was carried out by methods of mathematical statistics. Findings. Analysis of long-term results for determining the ultimate sorption capacity of coal matter by EPR-spectroscopy was carried out. The analysis testified about the need to adjust the proportionality coefficient between the ultimate sorption capacity of coal and the concentration of paramagnetic centers Na and the conjugation coefficient Ksc, depending on the coal rank metamorphism. The values of the proportionality coefficient by hard coal ranks for the yield of volatile components Vdaf and the reflectivity of vitrinite R° were calculated. Appropriate changes were made to the express-method for estimating the ultimate sorption capacity of coal by the EPR method. Originality. It is proved that the proportionality coefficient β between the ultimate sorption capacity of coal and the concentration of paramagnetic centers Na and the conjugation coefficient Ksc is not a constant value, but changes (decreases) with the degree of metamorphism. It is established that this relationship is satisfactorily characterized by the sigmoid model, whose inflection (on the graph) is confined to the gas and fat ranks of coals (volatile-matter yield is 29 %) and is caused by the second main jump of coalification during a cardinal change in the molecular structure of coal, associated with the completion of the intensive decomposition of the polymer-lipoidin component in the coal matter. Practical values. The express-method was improved for estimating the ultimate sorption capacity of coal by the EPR-method, which differs by specified proportionality coefficients according to ranks in the series of coalification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.