Nanocomposites based on vinyl alcohol-containing polymers and nanostructured gold have been efficiently prepared by a UV photo-reduction process. The very fast process provided dispersed gold nanoparticles with average diameters ranging from 3 to 20 nm depending on the host polymer matrix and the irradiation time. Uniaxial drawing of the irradiated Au/polymer nanocomposites favours the anisotropic distribution of packed assemblies of gold particles, providing oriented films with polarization-dependent tunable optical properties. These pronounced dichroic properties suggest that the nanocomposite films could find potential applications as colour polarizing filters, radiation responsive polymeric objects and smart flexible films in packaging application
A detailed atomic force microscopy study has been performed on the open-framework, microporous material silicalite. Emphasis has been placed on determining the effect of supersaturation on the crystal growth process. The relative rates of fundamental crystal growth processes can be substantially altered by tuning the supersaturation. In this manner, it is possible to, for instance, switch on and off surface nucleation while retaining terrace spreading. This offers a potential mechanism by which it might be possible to control important crystal aspects such as defect density and intergrowths.
Future applications of nanoporous materials will be in opto-electronic devices, magnetic and chemical sensors, shape-selective and bio-catalysis, structural materials and nuclear waste management. Crucially, in all such applications, an understanding of crystal growth to the same depth as has been achieved in semiconductor technology is needed. Therefore, defects, intergrowths, dopants and isomorphous substitution must be controlled, and crystal habit and size (e.g. single crystal films) must be fabricated with precision. These goals elude the community because of lack of understanding of crystal growth processes. Modern microscopy techniques including AFM, ultra-high resolution SEM and HREM coupled with theoretical calculations are beginning to reveal the details of these growth processes yielding the important thermodynamic data crucial to effect synthetic control such as: controlling defects; controlling intergrowths: introducing chirality; modifying surface access; altering diffusion pathways; controlling crystal habit; synthesising templated materials cheaply in order to render them economically viable; controlling crystal size for instance as single crystal films. In this paper we will discuss recent results including: the details of surface alteration processes in nanoporous materials, measured in situ, under different chemical environments and the ability to switch processes on and off by the control of growth conditions. Further we illustrate an approach to theoretically model the crystal growth in such complex systems which ultimately delivers activation energies for fundamental growth processes.
In situ atomic force microscopy (AFM) is used to differentiate temporally both structure and mechanism in the removal of fundamental structural units during the dissolution of zeolite A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.