We revisit the computation of the shear viscosity to entropy ratio in a holographic p-wave superfluid model, focusing on the role of rotational symmetry breaking. We study the interplay between explicit and spontaneous symmetry breaking and derive a simple horizon formula for η/s, which is valid also in the presence of explicit breaking of rotations and is in perfect agreement with the numerical data. We observe that a source which explicitly breaks rotational invariance suppresses the value of η/s in the broken phase, competing against the effects of spontaneous symmetry breaking. However, η/s always reaches a constant value in the limit of zero temperature, which is never smaller than the Kovtun-Son-Starinets (KSS) bound, 1/4π. This behavior appears to be in contrast with previous holographic anisotropic models which found a power-law vanishing of η/s at small temperature. This difference is shown to arise from the properties of the near-horizon geometry in the extremal limit. Thus, our construction shows that the breaking of rotations itself does not necessarily imply a violation of the KSS bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.