The metapopulation structure of Phytophthora infestans sensu lato is genetically diverse in the highlands of Ecuador. Previous reports documented the diversity associated with four putative clonal lineages of the pathogen collected from various hosts in the genus Solanum. This paper simultaneously analyzes diversity of the complete collection of isolates, including a large number that had not yet been reported. This analysis confirmed the existence of three pathogen populations, which all appear to be clonal lineages, and that correspond to those previously reported as US-1, EC-1, and EC-3. No evidence was found from the analyses of recently collected isolates that would contradict earlier reports about these three lineages. In contrast, new data from a group of isolates from several similar hosts caused us to modify the previous description of clonal lineage EC-2 and its previously proposed hosts, S. brevifolium and S. tetrapetalum. Given the uncertainty associated with the identification of these hosts, which all belong to the section Anarrhichomenum, we refer to them as the Anarrhichomenum complex, pending further taxonomic clarification. New pathogen genotypes associated with the Anarrhichomenum complex were isolated recently that are A1 mating type and Ia mitochondrial DNA (mtDNA) haplotype, and therefore differ from the previously described EC-2 lineage, which is A2 and Ic, respectively. Because of uncertainty on host identification, we do not know if the new genotypes are limited to one host species and therefore represent yet another host-adapted clonal lineage. For now, we refer to the new genotypes and previously described EC-2 genotypes, together, as the pathogen group attacking the Anarrhichomenum complex. Two A2 isolates identical to the previously described EC-2 archetype were collected from severely infected plants of pear melon (S. muricatum). Pear melon is generally attacked by US-1, and this is the first clear case we have documented in which two distinct pathogen genotypes have caused severe epidemics on the same host. Based on presence of unique marker alleles (restriction fragment length polymorphism [RFLP] and mtDNA) and genetic similarity analysis using RFLP and amplified fragment length polymorphism data, EC-3 and isolates from the Anarrhichomenum complex are genetically distinct from all genotypes of P. infestans that have been reported previously. No current theory of historical migrations for this pathogen can adequately support a Mexican origin for EC-3 and genotypes of the Anarrhichomenum complex and they may, therefore, be palaeoendemic to the Andean highlands. To date, we have identified 15 hosts in the genus Solanum, in addition to the Anarrhichomenum complex, and some unidentified species of P. infestans sensu lato in Ecuador. Five of the Solanum hosts are cultivated. One isolate was collected from Brugmansia sanguinea, which represents the first report from Ecuador of a host of this pathogen that is not in the genus Solanum. However, P. infestans sensu lato was only foun...
Twenty isolates of Phytophthora infestans from potato and twenty-two from tomato, collected in Uganda and Kenya in 1995, were compared for dilocus allozyme genotype, mitochondrial DNA (mtDNA) haplotype, mating type and restriction fragment length polymorphism (RFLP) fingerprint using probe RG57. Based on RFLP fingerprint and mtDNA haplotype, all isolates were classified in the US21 clonal lineage. Nonetheless, isolates from potato differed from isolates from tomato in several characteristics. Isolates from potato had the 86/100 glucose-6-phosphate isomerase (Gpi) genotype, while those from tomato were 100/100, which represents a variant of US21 that had been identified previously as US21.7. Furthermore, while pure cultures of the pathogen were acquired from infected potato leaflets by first growing the isolates on potato tuber slices, this approach failed with infected tomato tissue because the isolates grew poorly on this medium. Tomato isolates were eventually purified using a selective medium. Six isolates from each host were compared for the diameter of lesions they produced on three tomato and three potato cultivars in one or two detached-leaf assays (four isolates from the first test were repeated in the second). On potato leaflets, isolates from potato caused larger lesions than isolates from tomato. On tomato leaflets, isolates from that host caused larger lesions than did isolates from potato, but the difference was significant in only one test. The interaction between source of inoculum (potato or tomato) and inoculated host (potato or tomato) was significant in both tests. Isolates from tomato were highly biotrophic on tomato leaflets, producing little or no necrosis during the seven days following infection, even though abundant sporulation could be seen. In contrast, isolates from potato sporulated less abundantly on tomato leaflets and produced darkly pigmented lesions that were most visible on the adaxial side of the leaflets. Nonetheless, all isolates infected and sporulated on both hosts, indicating that host adaptation is not determined by an ability to cause disease but rather by quantitative differences in pathogenic fitness. Assessment of Gpi banding patterns, mtDNA haplotype and RFLP fingerprint of 39 isolates from potato collected in Uganda and Kenya in 1997 indicated that the population had not changed on this host. The population of P. infestans from Kenya and Uganda provides an interesting model for the study of quantitative host adaptation.
Twenty-six isolates of a Phytophthora population from two wild solanaceous species, Solanum tetrapetalum (n 11) and S. brevifolium (n = 15), were characterized morphologically, with genetic and phenotypic markers, and for pathogenicity on potato and tomato. Based on morphology, ribosomal internal transcribed spacer region 2 (ITS2) sequence, and pathogenicity, all isolates closely resembled P. infestans and were tentatively placed in that species. Nonetheless, this population of Phytophthora is novel. Its primary host is neither potato nor tomato, and all isolates had three restriction fragment length polymorphism (RFLP) bands (probe RG57) and a mitochondrial DNA haplotype that have not been reported for P. infestans. All the isolates were the A2 mating type when tested with a P. infestans A1 isolate. The A2 mating type has not been found among isolates of P. infestans from potato or tomato in Ecuador. Geographical substructing of the Ecuadorian A2 population was detected. The three isolates from the village of Nono, identical to the others in all other aspects, differed by three RFLP bands; those from Nono lacked bands 10 and 16, but possessed band 19. Most of the Ecuadorian A2 isolates were nonpathogenic on potato and tomato, but a few caused very small lesions with sparse sporulation on necrotic tissue. Cluster analysis of multilocus genotypes (RFLP, mating type, and two allozymes) dissociated this A2 population from genotypes representing clonally propagated populations of P. infestans worldwide. The current hypotheses for the historical global movements of P. infestans do not satisfactorily explain the origin or possible time of introduction into Ecuador of this A2 population. Assuming the population is P. infestans, its presence in Ecuador suggests either a hitherto unreported migration of the pathogen or an indigenous population that had not previously been detected.
To determine the potential of sexual reproduction among host-adapted populations of Phytophthora infestans sensu lato in Ecuador, 13 A1 isolates belonging to clonal lineages US-1, EC-1 and EC-3, and 11 A2 isolates belonging to the clonal lineage EC-2, were paired on agar plates to induce crossing. In the first experiment, six A1 isolates (three US-1, two EC-1 and one EC-3) were each crossed with three A2 isolates (total = 18 crosses). Matings involving isolates of the EC-1 lineage produced more oospores of healthy appearance than did matings with isolates of US-1 or EC-3. In the second experiment, the oospores of 35 crosses (21 EC-1 × EC-2; 10 US-1 × EC-2; four EC-3 × EC-2) were dispersed on water agar to assess oospore germination. Overall, germination percentages were low. Only one cross produced enough progeny for evaluation. Twenty-three single-oospore offspring were isolated and evaluated for mating type; electrophoretic patterns of glucose-6-phosphate isomerase ( Gpi ) and peptidase ( Pep ) alloenzyme loci; mitochondrial DNA haplotype; and genomic DNA fingerprint. Multilocus genotype data indicated that all 23 isolates resulted from meiotic recombination. Four progeny with homothallic phenotype appeared to be unstable heterokaryons. Markers at several loci segregated according to simple Mendelian expectations for a diploid organism, but the ratios of three RFLP loci and the Pep locus were not consistent with Mendelian expectations. All progeny were nonpathogenic on hosts of the parental genotypes. Reduced mating success and reduced pathogenic fitness of progeny appear to be postmating mechanisms of reproductive isolation in populations of P. infestans sensu lato in Ecuador.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.