We report a new stress-induced kinetically driven morphological instability for driven systems. The effect of stress on the interfacial mobility couples to stress variations along a perturbed planar growth front. Comparison of theory and experiment for solid phase epitaxy at a corrugated Si(001) interface, with no free parameters, indicates that the new mechanism is required to account for the observed growth of the corrugation amplitude. This mechanism operates in conjunction with known diffusional and elastic strain energy-driven instabilities in determining morphological evolution.[S0031-9007(98)
SUMMARYA new general purpose boundary element method for domains with cracks has been recently developed. This technique avoids the use of a multi-domain decomposition by including an additional integral equation expressing the boundary condition on the crack. The principal requirement of this technique is the analytic determination of certain hypersingular integrals of the Green's function which arise from this equation. In order to establish the applicability of this method for fracture, these integrals are evaluated herein for the Kelvin solution of the three-dimensional Navier equations of linear elasticity. Numerical results for fracture problems using the single-domain boundary element analysis are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.