Various vinyl sulfone functionalized dextrans (dex-VS) (M n,dextran ) 14K or 31K) with degrees of substitution (DS) ranging from 2 to 22 were conveniently prepared by a one-pot synthesis procedure at room temperature. This procedure involved reaction of a mercaptoalkanoic acid with an excess amount of divinyl sulfone yielding vinyl sulfone alkanoic acid, followed by conjugation to dextran using N,N′-dicyclohexylcarbodiimide (DCC)/4-(dimethylamino)pyridinium 4-toluenesulfonate (DPTS) as a catalyst system. By using two different mercaptoalkanoic acids, 3-mercaptopropionic acid (1a) and 4-mercaptobutyric acid (1b), dex-VS conjugates with either an ethyl spacer (denoted as dex-Et-VS) or a propyl spacer (denoted as dex-Pr-VS) between the thioether and ester groups were obtained. Linear and four-arm mercaptopoly(ethylene glycol) (M n ) 2.1K) with two or four thiol groups (denoted as PEG-2-SH and PEG-4-SH, respectively) were also prepared. Hydrogels were rapidly formed in situ under physiological conditions by Michael type addition upon mixing aqueous solutions of dex-VS and multifunctional PEG-SH at a concentration of 10-20% w/v. The gelation time ranged from 0.5 to 7.5 min, depending on the DS, concentration, dextran molecular weight, and PEG-SH functionality. Rheological studies showed that these dextran hydrogels are highly elastic. The storage modulus increased with increasing DS, concentration, and dextran molecular weight, and hydrogels with a broad range of storage moduli from 3 to 46 kPa were obtained. Swelling/degradation studies revealed that these dextran hydrogels have a low initial swelling and are degradable under physiological conditions. The degradation time varied from 3 to 21 days depending on the DS, concentration, dextran molecular weight, and PEG-SH functionality. Interestingly, dex-Pr-VS hydrogels showed prolonged degradation times, but otherwise similar properties compared to dex-Et-VS hydrogels. The hydrolysis of the linker ester bonds of the dex-VS conjugates under physiological conditions was confirmed by 1 H NMR. The results showed that the hydrolysis kinetics were independent of the DS and the dextran molecular weight. Therefore, the degradation rate of these hydrogels can be precisely controlled.
Thiol-functionalized dextrans (dex-SH) (M(n,dextran) = 14K or 31K) with degrees of substitution (DS) ranging from 12 to 25 were synthesized and investigated for in situ hydrogel formation via Michael type addition using poly(ethylene glycol) tetra-acrylate (PEG-4-Acr) or a dextran vinyl sulfone conjugate with DS 10 (dex-VS DS 10). Dex-SH was prepared by activation of the hydroxyl groups of dextran with 4-nitrophenyl chloroformate and subsequent reaction with cysteamine. Hydrogels were rapidly formed in situ under physiological conditions upon mixing aqueous solutions of dex-SH and either PEG-4-Acr or dex-VS DS 10 at polymer concentrations of 10 to 20 w/v%. Rheological studies showed that these hydrogels are highly elastic. By varying the DS, concentration, dextran molecular weight, and type of cross-linker, hydrogels with a broad range of storage moduli of 9 to 100 kPa could be obtained. Varying the ratio of thiol to vinyl sulfone groups from 0.9 to 1.1 did not alter the storage modulus of the hydrogels, whereas larger deviations from equimolarity (thiol to vinyl sulfone ratios of 0.75 and 1.5) considerably decreased the storage modulus. The plateau value of hydrogel storage modulus was reached much faster at pH 7.4 compared to pH 7, due to a higher concentration of the thiolate anion at higher pH. These hydrogels were degradable under physiological conditions. Degradation times were 3 to 7 weeks for dex-SH/dex-VS DS 10 hydrogels and 7 to over 21 weeks for dex-SH/PEG-4-Acr hydrogels, depending on the DS, concentration, and dextran molecular weight.
PurposeUse of RNA interference as novel therapeutic strategy is hampered by inefficient delivery of its mediator, siRNA, to target cells. Cationic polymers have been thoroughly investigated for this purpose but often display unfavorable characteristics for systemic administration, such as interactions with serum and/or toxicity.MethodsWe report the synthesis of a new PEGylated polymer based on biodegradable poly(amido amine)s with disulfide linkages in the backbone. Various amounts of PEGylated polymers were mixed with their unPEGylated counterparts prior to polyplex formation to alter PEG content in the final complex.ResultsPEGylation effectively decreased polyplex surface charge, salt- or serum-induced aggregation and interaction with erythrocytes. Increasing amount of PEG in formulation also reduced its stability against heparin displacement, cellular uptake and subsequent silencing efficiency. Yet, for polyplexes with high PEG content, significant gene silencing efficacy was found, which was combined with almost no toxicity.ConclusionsPEGylated poly(amido amine)s are promising carriers for systemic siRNA delivery in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.