The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.
When human remains are found, apart from helping explain the cause of death and determining the extent of any injuries, forensic pathologists are usually requested to determine the identity of the deceased and how much time has elapsed since his death. In the Czech Republic, the criminal liability for murder is set to a statute of limitations of 20 years. In our pilot study, tissue samples of human remains from two decedents were radiocarbon (14C) dated to estimate the date of death. In agreement with published literature, we have confirmed relatively short carbon turnover time in hair, nail, and bone fat. Therefore these samples are the most appropriate for determining date of death. Other samples, such as teeth (collagen and carbonate form) and collagen isolated from bone samples, which exhibit relatively long carbon turnover time, can be used to reduce ambiguity of dating results and to indicate some interfering influences. Given the possibility of processing multiple sample types, we also propose brief guidelines for comparing and interpreting the results of individual analyses.
During the 7th European Conference on Protection Against Radon at Home and at Work held in the autumn of 2013 in Prague, the second intercomparison of measuring instruments for radon and its short-lived decay products and the first intercomparison of radon/thoron gas discriminative passive detectors in mix field of radon/thoron were organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI) in Prague. In total, 14 laboratories from 11 different countries took part in the 2013 NRPI intercomparison. They submitted both continuous monitors for the measurement of radon gas and equivalent equilibrium radon concentration in a big NRPI chamber (48 m3) and sets of passive detectors including radon/thoron discriminative for the measurement of radon gas in the big chamber and thoron gas in a small thoron chamber (150 dm3).
Three experiments were conducted with a volunteer to test the kinetics of the 222Rn exhalation after a shorttime exposure to an elevated 222Rn air concentration. Radon concentration in an exhaled air was measured, complemented by whole body counting of 222Rn decay products in a body. Exhaled activities are compared with the prediction of the recent ICRP biokinetic model for radon. While a rapid equilibration of the exhaled radon activity concentration with that in the air inhaled corresponded with the model, the measured 222Rn exhalation rate was significantly less than modelled. Five hours after termination of the inhalation phase, the radon concentration in the exhaled air decreased to levels expected for non-elevated indoor radon activity concentration. Whole body activities of the 222Rn decay products were found higher than expected. Inhalation of the unattached fraction or residual activity of decay products in the air inhaled may be the explanation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.