Topological insulator (TI) states have been demonstrated in materials with narrow gap and large spin-orbit interactions (SOI). Here we demonstrate that nanoscale engineering can also give rise to a TI state, even in conventional semiconductors with sizable gap and small SOI. Based on advanced first-principles calculations combined with an effective low-energy k•p Hamiltonian, we show that the intrinsic polarization of materials can be utilized to simultaneously reduce the energy gap and enhance the SOI, driving the system to a TI state. The proposed system consists of ultrathin InN layers embedded into GaN, a layer structure that is experimentally achievable.
In this study, the concept of “twinning induced plasticity (TWIP) alloys” is broadened, and the underlying intrinsic microscopic mechanisms of the general TWIP effect are intensively explored. For the first aspect, “TWIP copper alloys” was proposed following the concept of “TWIP steels”, as they share essentially the same strengthening and toughening mechanisms. For the second aspect, three intrinsic features of twinning: i.e. “dynamic development”, “planarity”, as well as “orientation selectivity” were derived from the detailed exploration of the deformation behavior in TWIP copper alloys. These features can be considered the microscopic essences of the general “TWIP effect”. Moreover, the effective cooperation between deformation twinning and dislocation slipping in TWIP copper alloys leads to a desirable tendency: the synchronous improvement of strength and plasticity (SISP). This breakthrough against the traditional trade-off relationship, achieved by the general “TWIP effect”, may provide useful strategies for designing high-performance engineering materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.