Objective. Aim of this work was to create a stable liposomal dosage form of native hydrophobic antitumor compound from the group of indolocarbazoles-LHS-1208. Materials and methods. Quantitative analysis of the drug content in liposomes was determined by spectrophotometry with a standard sample at λ = 320 ± 2 nm. The encapsulation was investigated as the ratio of LHS-1208 concentration in the liposomal dispersion after extrusion through nylon membrane filters 0.22 µm "Pall" to concentration LHS-1208 in liposomal dispersions before filtration. pH of the liposome was determitaned by the method of potentiometry. The size of liposomes was evaluated by nanosizer. Cytotoxic activity was studied by MTT-test.
Despite the rapid development of medical technologies, chemotherapy treatment still occupies an important place in clinical oncology. In this regard, the current research in this area focuses on the synthesis of new highly effective antitumor substances that have minimal side effects and the development of stable pharmaceutical formulations (PF) on their basis. In order to solve this problem, the I. Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences actively sought for original substances, namely, nitrosourea (NU) derivatives, one of the most promising classes of anticancer drugs. As a result of this research, a novel NU derivative was synthesized, namely ormustine, which showed high antitumor activity in preliminary preclinical trials. It is now crucial to develop an ormustine pharmaceutical formulation. Conducted technological studies showed that the most suitable solvent for the drug substance is 0.1 M hydrochloric acid, which ensures its rapid dissolution by ultrasonic treatment. A significant reduction in the concentration of the active ingredient during the storage of the solution required the development of a technique of its lyophilization and the selection of a shaper such as a Kollidon 17 PF. Upon completion of the development of a pharmaceutical formulation of ormustine, its stability after lyophilization was demonstrated, and a sufficient amount of the drug has been acquired for preclinical research.
Short Communications Despite a wide range of chemotherapeutic drugs used in actual therapy of malignant tumours, the main limitation of use in clinical practice is the expressed toxicity of most of these. There existed a need to search, study and develop dosage forms of drugs with high antitumor activity and low expressed side effects. Such dosage forms are needed to deliver analogues of a peptide hormone of hypothalamus, somatostatin, which inhibited release of human growth hormone, thyrotropin, glucagon, insulin, and also suppressed proliferation of many normal and tumor cells [1]. Analogues of somatostatin such as octreotide and lantreotide are under clinical investigation [2]. Indications for their use in oncology are, endocrine tumours of digestive tract and pancreas and therapy of androgen-independent prostate cancer. Thus, synthesis of new analogues of the somatostatin group, investigation of the mechanisms of action of their antiproliferative activities, and development of dosage forms are the new directions of research in this field.
Background. Current work is devoted to the study in vivo of concentration and selectivity of accumulation of infrared photosensitizer (PS) hydroxyaluminium tetra-3-phenylthiophthalocyanine in liposomal form in intramuscularly and subcutaneously transplanted mice tumor models in comparison to normal tissues. Objective: to study the level and selectivity of accumulation of hydroxyaluminium tetra-3-phenylthiophthalocyanine liposomal form on mice tumor models in order to optimize the transplantation approach and the starting of photodynamic treatment. Materials and methods. A range of transplantable mice tumors was used in the study: solid carcinoma Ehrlich (ELD) and solid sarcoma S-37, epidermoid Lewis lung carcinoma (LLC) and colon adenocarcinoma (AKATOL). For the assessment of concentration of PS in tissues was evaluated by fluorescence spectroscopy in vivo. Results. The optimum transplantation approaches were shown to be as follows. Solid carcinoma Ehrlich (ELD) provided the highest accumulation of PS when transplanted intramuscularly. Five hours after administration concentration of PS in tumor achieves more than 7 mg/kg, with selectivity in comparison to normal tissue 3 : 1. The maximum concentration of PS in sarcoma S-37 was observed with subcutaneous transplantation, achieving at 5 h after administration the value of 5.4 mg/kg with selectivity of accumulation 4.3: 1. Both LLC and AKATOL showed optimum results with intramuscular transplantation. Maximum concentration of PS in LLC was observed 5 h after administration, achieving 7.5 mg/kg with selectivity exceeding 4. Concentration of photosensitizer in AKATOL 7h post administration achieved 6.8 mg/kg with selectivity about 2. Conclusions. Liposomal form of PS with intravenous administration selectively accumulates in tumors. The obtained experimental data allows to recommend the method of listed tumors models transplantation for the studies of PS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.