It was experimentally observed that a rheological process of material is usually accompanied with an evolution of internal defects or micro-damage. Based on the micro-observation of the twinning evolution for Zircaloy-4, the adiabatic shear banding evolution for titanium alloy TB2 and the micro-cracks evolution for cast magnesium alloy ZM5-T4, thermoplastics PMMA and cement mortar, a rate-dependent defect/damage evolution law is suggested on the basis of thermo-activated mechanism. Correspondingly, a damage-modified rate-dependent rheological relation, taking into account the damage-weakening effect, is proposed and discussed.
The effects of grain size on the spall response were investigated for high purity copper materials by plate-impact experiments including real-time measurements of the free surface velocity profiles as well as post-impact fractography studies on the soft-recovered samples. High purity copper plates were cold rolled and heat treated to produce recrystallized samples with average grain sizes of 78, 273 and 400 μm, respectively. The spall strength estimated from the free surface velocity profile is nearly constant with no significant effect on the grain size. However, differences are observed in the acceleration rate of velocity rebound beyond the minima. This may be attributed to the effect of grain size on the growth rate of damage. Metallographic analyses of the fracture surface show that the characteristic feature of the fracture surface clearly depends on the grain size. In the 78-and 273-μm samples, the fracture surfaces are decorated with large, high-density ductile dimples suggesting that the preferential failure mode is ductile intergranular fracture. In the 400-μm samples, the fracture surfaces have a rock candy appearance with small, high density brittle dimples as well as large ductile dimples suggesting that the fracture mode is a mix of both brittle intergranular fracture and ductile transgranular fracture.
Experiments investigating dynamic tensile fracture were performed on the extruded rods of 2024‐T4 and 7075‐T6 aluminum alloys under varying loading conditions. The initial yield stress and fracture strain of 7075‐T6 alloy obtained in spilt Hopkinson tension bar tests are higher than that of 2024‐T4 alloy. But the initiation fracture toughness and spall strength of 2024‐T4 alloy are higher than those of 7075‐T6 alloy in three‐point bending and plate impact experiments, which indicates that 2024‐T4 alloy has better crack initiation tolerance and stronger spall failure resistance. Based on metallurgical investigations by using optical and scanning electron microscopes, it is revealed that the microstructure has a profound effect on the dynamic tensile fracture mechanism of each aluminum alloy. The 2024‐T4 alloy is relatively brittle due to voids or cracks nucleated at many coherent CuMgAl2 precipitate phases in the grain interiors, and the fracture mode is predominantly transgranular. The 7075‐T6 alloy exhibits relatively ductile fracture because voids or cracks growth is partly intergranular along the grain boundaries and partly transgranular by void formation around coarse intermetallic particles. The obvious differences of damage distribution and void coalescence mechanisms for 2024‐T4 and 7075‐T6 alloys under plate impact are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.