A turbulent boundary layer structure which develop over a k-type rough wall displays several differences with those found on a smooth surface. The magnitude of the wake strength depends on the wall roughness. In the near-wall region, the contribution to the Reynolds shear stress fraction, corresponding to each event, strongly depends on the wall roughness. In the wall region, the diffusion factors are influenced by the wall roughness where the sweep events largely dominate the ejection events. This trend is reversed for the smooth-wall. Particle Image Velocimetry technique (PIV) is used to obtain the fluctuating flow field in the turbulent boundary layer in order to confirm this behavior. The energy budget analysis shows that the main difference between rough- and smooth-walls appears near the wall where the transport terms are larger for smooth-wall. Vertical and longitudinal turbulent flux of the shear stress on both smooth and rough surfaces is compared to those predicted by a turbulence model. The present results confirm that any turbulence model must take into account the effects of the surface roughness.
The flow downstream of a three-dimensional double backward facing step (3D DBWFS) is investigated for Reynolds number Reh ranging from 5×103 to8×104 (based on the first step height h). The flow is studied both qualitatively by means of laser tomoscopy and oil-flow visualizations and quantitatively by means of particle image velocimetry (PIV) measurements. In particular, the results show a mean flow asymmetry. A sensitivity study around zero degree sideslip has shown that the flow is bistable for this geometry. This bistability has been observed in two different wind tunnels for very different upstream conditions. As a main consequence, the zero degree drift angle could be a relevant validation case of unstable flow computation. More tests are carried out to understand and control this particular flow feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.