Numerical models are developed to predict the generation, accumulation, and escape of hydrocarbons at the time of sediment accumulation (basin modeling) in the West Siberian geosyneclise during the Jurassic, Cretaceous, and Cenozoic. A theoretical framework for such computer models is presented with a special emphasis on modeling of gas generation during early catagenesis. The study provides a description of the algorithm used for interpretation of simulation results and considers the stages of formation of a shale cap rock during lithogenesis. Peak oil generation began in the Aptian and continued for about 80 Myr until Eocene–Miocene times; gas generation in the late catagenetic window took place from the Valanginian to the Maastrichtian. Numerical simulations show that the major oil-prone source rocks in the South Kara kitchen area were, in the decreasing order of potential, the Bazhenovo (Yanov Stan), Kiterbyut, and Malyshevka Formations. The Upper Jurassic regional rock unit generated over 60% of liquid hydrocarbons and heterocyclic compounds (oils). The major gas-prone source rocks in the area were, in the decreasing order of potential, the Kiterbyut, Malyshevka, Alym, and Bazhenovo (Yanov Stan) Formations. The Lower and Middle Jurassic regional rock units generated about 65% of hydrocarbon gases. Results are presented to quantify the amount of hydrocarbons dissipated due to either the absence or poor effectiveness of confining seals and to explore the role of Cenozoic tectonic processes in the formation of petroleum accumulations in the basin.
The Tunguska basin, eastern Siberia, contains 3.5-8 km of Late Precambrian to Triassic sedimentary and igneous rocks. Source-reservoir-seal systems are present throughout the Upper Precambrian to Permo-Carboniferous interval. Hydrocarbon generation and accumulation largely preceded the formation of the Siberian traps, a Late Permian to Middle Triassic association of effusive and explosive extrusives and intrusive dolerites. The intrusives occur mainly in Palaeozoic strata and have profoundly affected hydrocarbon accumulation. The major process is of destruction of hydrocarbon accumulations, owing to the fact that substantial volumes of the Palaeozoic basin fill has been heated to 150 degrees C plus. At lower temperatures experienced further from the contacts between the intrusions and the country rocks, organic matter thermal maturation levels may significantly exceed those related to burial alone. Water-mineral-hydrocarbon interactions in association with magmatic heating have produced a range of effects, including the generation of hydrocarbons rich in sulphur compounds such as mercaptans.
We analyzed oils, gases, and bitumens of bottom sediments from natural shows on the southeastern shore of Lake Baikal, in the mouth of the Stvolovaya River near Capes Tolstyi and Gorevoi Utes. Based on a set of geological data, we have established that: (1) the lake oils underwent biodegradation to a variable degree: “Fresh” nondegraded paraffin oil floats up near Cape Gorevoi Utes; in the mouth of the Stvolovaya River and near Cape Tolstyi, aromatic-naphthene oil lacks n-alkanes, monomethyl alkanes, and acyclic isoprenoids; (2) Cenozoic oil originated from the organic matter of fresh-water basins with significant amounts of higher land plant remains, including angiosperm plants (oleanane), which suggests the lake or delta genesis of oil source formations of Cretaceous and younger ages. Judging from the carbon isotope composition (average δ13C = −43.84‰), methane from the bottom sediments near Cape Gorevoi Utes is catagenetic. The initial in-place resources in the Baikal sedimentary basins are estimated by the volumetric-statistical method at 500 mln tons of equivalent hydrocarbons.
The overall jump in global demand for gas, and especially oil, gives rise to particular concern regarding mankind’s energy future. In the middle and late 21st century, the crucial role in securing oil and gas supply of mankind will be played by sedimentary basins in the Arctic Ocean deep-water area, including those of the continental shelf in Russia’s Arctic seas. There is a 0.90 probability that the initial in-place resources of hydrocarbons in the Arctic Ocean will be greater than 90 Btoe. The estimates predict the rise of oil and gas industries on the Arctic shelves in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.