Cornelia de Lange Syndrome (CdLS) is a multi-organ system birth defects disorder linked, in at least half of cases, to heterozygous mutations in the NIPBL gene. In animals and fungi, orthologs of NIPBL regulate cohesin, a complex of proteins that is essential for chromosome cohesion and is also implicated in DNA repair and transcriptional regulation. Mice heterozygous for a gene-trap mutation in Nipbl were produced and exhibited defects characteristic of CdLS, including small size, craniofacial anomalies, microbrachycephaly, heart defects, hearing abnormalities, delayed bone maturation, reduced body fat, behavioral disturbances, and high mortality (75–80%) during the first weeks of life. These phenotypes arose despite a decrease in Nipbl transcript levels of only ∼30%, implying extreme sensitivity of development to small changes in Nipbl activity. Gene expression profiling demonstrated that Nipbl deficiency leads to modest but significant transcriptional dysregulation of many genes. Expression changes at the protocadherin beta (Pcdhb) locus, as well as at other loci, support the view that NIPBL influences long-range chromosomal regulatory interactions. In addition, evidence is presented that reduced expression of genes involved in adipogenic differentiation may underlie the low amounts of body fat observed both in Nipbl+/− mice and in individuals with CdLS.
The tonotopicity of the cat's primary auditory cortex (AI) is thought to provide the framework for frequency-specific processing in that field. This study was designed to assess this postulate by examining the spatial distribution of neurons within AI that are activated by a single tonal frequency delivered to the contralateral ear. Distributions obtained at each of several stimulus levels were then compared to assess the influence of stimulus amplitude on the spatial representation of a given stimulus frequency in AI. Data were obtained from 308 single units in AI of four adult, barbiturate-anesthetized cats, using extracellular recording methods. Stimuli were 40-ms tone pulses presented through calibrated, sealed stimulating systems. In each animal, the CF (stimulus frequency to which the unit is most sensitive), threshold at CF, response/level function at CF, and binaural interactions were determined for isolated neurons (usually one per track) in 60-90 electrode tracks. For each unit, regardless of its CF, responses to 40 repetitions of contralateral tones of a single frequency, presented at each of four or five sound pressure levels (SPLs) in the range from 10 to 80 dB were obtained. Different test frequencies were used in each of four cats (1.6, 8.0, 11.0, and 16.0 kHz). For tones of each SPL, we generated maps of the response rates across the cortical surface. These maps were then superimposed on the more traditional maps of threshold CF. All units whose CF was equal to the test frequency could be driven at some SPL, given an appropriate monaural or binaural configuration of the stimulus. There was a clear spatial segregation of neurons according to the shapes of their CF tone response/level functions. Patches of cortex, often occupying more than 2 mm2, seemed to contain only monotonic or only nonmonotonic units. In three cortices, a patch of nonmonotonic cells was bounded ventrally by a patch of monotonic cells, and in one of these cases, a second patch of monotonic cells was found dorsal to the nonmonotonic patch. Contralateral tones of any given SPL evoked excitatory responses in discontinuous cortical territories. At low SPLs (10, 20 dB), small foci of activity occurred along the isofrequency line representing the test frequency. Many of these cells had nonmonotonic response/level functions. (ABSTRACT TRUNCATED AT 400 WORDS)
We evaluated the consequences of neonatal cochlear destruction upon ascending projections to the inferior colliculi. Unilateral cochlear ablations were performed in both neonatal and adult gerbils. Four to 12 months later, the inferior colliculus (IC) was examined physiologically and injected unilaterally with horseradish peroxidase (HRP). The number of labeled cells was determined bilaterally in all three divisions of cochlear nucleus (CN) and in the medial superior olive (MSO). In both experimental groups, transneuronal changes within the deafferented CN were greater in the ventral divisions than in the dorsal division. On the unoperated side the magnitude of projections from CN to the inferior colliculi was altered in animals lesioned as neonates. Following HRP injections into the IC on the unoperated side, the number of ipsilaterally labeled cells in CN (unoperated side) was significantly greater in the neonatal experimental group than in adult experimental and control animals. These anatomical changes were accompanied by increased ipsilaterally evoked excitatory activity recorded in the IC on the unoperated side. Following HRP injections into the IC on the ablated side, the number of contralaterally labeled cells in CN (unoperated side) was significantly reduced in animals lesioned as neonates as compared with control animals. The number of labeled cells in ipsilateral MSO was not significantly different across groups. Our interpretation is that unilateral cochlear ablation in neonatal gerbils results in an increase in the magnitude of ipsilateral projections and a decrease in the magnitude of contralateral projections from CN on the unoperated side to the inferior colliculi. These data suggest that the normal pattern of innervation of the IC results, in part, from interactions among afferent projections.
The ability of an animal to localize a sound in space requires the precise innervation of the superior olivary complex by the ventral cochlear nuclei on each side of the lower brainstem. This precise pattern of innervation could require an immutable recognition of appropriate targets by afferent processes arising from these nuclei. This possibility was investigated by destroying one cochlea of gerbil pups (Meriones unguiculatus) on the second postnatal day and assessing the projections from the ventral cochlear nucleus (VCN) on the unablated side to the superior olivary complex during the subsequent 2 weeks and after the animals had reached maturity. A crystal of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was inserted into VCN on the unablated side in animals ranging in age from 3 to 14 days. To assess the permanence of any altered pattern of innervation, horseradish peroxidase was injected into VCN on the unablated side in adult, neonatally ablated animals. Finally, electrophysiological responses to acoustic stimuli delivered to the ear on the unablated side were recorded in the superior olivary complex of adult animals to assess whether altered innervation patterns were functional. Normative data were derived from our accompanying study of the development of VCN projections to the superior olivary complex in normal gerbils (Kil et al., this issue). Whereas VCN normally projects to the lateral aspect of the ipsilateral medial superior olive and to the medial aspect of the contralateral medial superior olive in control animals, in experimental animals VCN on the unablated side projects to both sides of these nuclei. Whereas in the gerbil, VCN normally projects only to the hilar area and to the ventrolateral limb of the contralateral lateral superior olive, in experimental animals VCN on the unablated side projects throughout this nucleus. This induced projection is specific in that the efferents to each limb of the contralateral nucleus are linked to the normal projection to the homotopic region of the ipsilateral nucleus. Whereas VCN innervates the contralateral medial nucleus of the trapezoid body in control animals, in experimental animals VCN on the unablated side provides calyces of Held in the ipsilateral nucleus as well. The induced projections to these three major subnuclei of the superior olivary complex first appear within 24 hours of the cochlear ablation and continue to develop over at least the subsequent 11 days. Thus, prior to the day when the cochlea becomes functional, VCN has established specific ectopic projections to loci normally innervated by VCN on the ablated side.(ABSTRACT TRUNCATED AT 400 WORDS)
The postnatal development of the projection from the ventral cochlear nucleus to the principal nuclei in the superior olivary complex in gerbil (Meriones unguiculatus) was studied in an age-graded series of pups ranging from 0 to 18 days old. Small crystals of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) were inserted into the ventral cochlear nucleus of aldehyde-fixed brains, and the labeled projections were examined with epifluorescence microscopy. Selected sections were photooxidized in a solution of diaminobenzidine and subsequently processed for electron microscopy to examine the development of labeled synapses in the target nuclei. Horseradish peroxidase was injected into the ventral cochlear nucleus of adult gerbils to assess the form and persistence of projections observed in the neonatal animals. In addition, electrophysiological responses to acoustic stimuli of single units in the adult auditory brainstem were analyzed to confirm the functionality of the novel projection from the ventral cochlear nucleus to the contralateral lateral superior olive. By the day of birth (P0), developing axons from the ventral cochlear nucleus have already established highly ordered pathways to the three primary nuclei of the superior olivary complex: the ipsilateral lateral superior olive, the contralateral medial nucleus of the trapezoid body, and at the lateral and medial dendrites of the ipsilateral and contralateral medial superior olive, respectively. Developing axons from the ventral cochlear nucleus that innervated the contralateral medial nucleus of the trapezoid body lacked the terminal morphology characteristic of the calyx of Held, but began to adopt a more characteristic form on P5. The mature calyx appeared around P14-16. Exuberant developmental projections to topographically inappropriate areas of the superior olivary complex were not observed at the postnatal ages studied. In addition to the projections of the ventral cochlear nucleus to the superior olivary complex described in other species, we observed the development and maintenance of a major direct projection from the ventral cochlear nucleus to the contralateral lateral superior olive. On P0, ventral cochlear nucleus axons decussate in the dorsal trapezoid body, form a plexus at the dorsal edge of the contralateral medial superior olive, and enter the ventrolateral limb of the contralateral lateral superior olive. Over the next 2 weeks, fascicles of fibers form on the hilar and ventral aspects of the ventrolateral limb. Fibers arising from these fascicles form converging, but nonoverlapping, arborizations within the ventrolateral limb at right angles to the curvature of the nucleus. The medial region was devoid of labeled axons.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.