There is a growing need to develop analytical methods that can distinguish compounds found within industrially derived oil sands process water (OSPW) from those derived from natural weathering of oil sands deposits. This is a difficult challenge as possible leakage beyond tailings pond containments will probably be in the form of mixtures of water-soluble organics that may be similar to those leaching naturally into aquatic environments. We have evaluated the potential of negative ion electrospray ionization high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) for comparing oil sands polar organics from tailing ponds, interceptor wells, groundwater, river and lake surface waters. Principal component analysis was performed for all species observed. which included the O(2) class (often assumed to be monocarbxoylic naphthenic acids) along with a wide range of other species including humic substances in the river and lake samples: O(n) where n=1-16; NO(n) and N(2)O(n) where n=1-13; and O(n)S and O(n)S(2) where n=1-10 and 1-8, respectively. A broad range of species was investigated because classical naphthenic acids can be a small fraction of the 'organics' detected in the polar fraction of OSPW, river water and groundwater. Aquatic toxicity and environmental chemistry are attributed to the total organics (not only the classical naphthenic acids). The distributions of the oil sands polar organics, particularly the sulfur-containing species, O(n)S and O(n)S(2), may have potential for distinguishing sources of OSPW. The ratios of species containing O(n) along with nitrogen-containing species: NO(n), and N(2)O(n), were useful for differentiating organic components derived from OSPW from those found in river and lake waters. Further application of the FTICRMS technique for a diverse range of OSPW of varying ages and composition, as well as the surrounding groundwater wells, may be critical in assessing whether leakage from industrial sources to natural waters is occurring.
The objective of this study was to identify chemical components that could distinguish chemical mixtures in oil sands process-affected water (OSPW) that had potentially migrated to groundwater in the oil sands development area of northern Alberta, Canada. In the first part of the study, OSPW samples from two different tailings ponds and a broad range of natural groundwater samples were assessed with historically employed techniques as Level-1 analyses, including geochemistry, total concentrations of naphthenic acids (NAs) and synchronous fluorescence spectroscopy (SFS). While these analyses did not allow for reliable source differentiation, they did identify samples containing significant concentrations of oil sands acid-extractable organics (AEOs). In applying Level-2 profiling analyses using electrospray ionization high resolution mass spectrometry (ESI-HRMS) and comprehensive multidimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOF/MS) to samples containing appreciable AEO concentrations, differentiation of natural from OSPW sources was apparent through measurements of O2:O4 ion class ratios (ESI-HRMS) and diagnostic ions for two families of suspected monoaromatic acids (GC × GC-TOF/MS). The resemblance between the AEO profiles from OSPW and from 6 groundwater samples adjacent to two tailings ponds implies a common source, supporting the use of these complimentary analyses for source identification. These samples included two of upward flowing groundwater collected <1 m beneath the Athabasca River, suggesting OSPW-affected groundwater is reaching the river system.
The large volumes, acute toxicity, estrogenicity, and antiandrogenicity of process-affected waters accruing in tailings ponds from the operations of the Alberta oil sands industries pose a significant task for environmental reclamation. Synchronous fluorescence spectra (SFS) suggest that oil sands process-affected water (OSPW) may contain aromatic carboxylic acids, which are among the potentially environmentally important toxicants, but no such acids have yet been identified, limiting interpretations of the results of estrogenicity and other assays. Here we show that multidimensional comprehensive gas chromatography-mass spectrometry (GCxGC-MS) of methyl esters of acids in an OSPW sample produces mass spectra consistent with their assignment as C(19) and C(20) C-ring monoaromatic hydroxy steroid acids, D-ring opened hydroxy and nonhydroxy polyhydrophenanthroic acids with one aromatic and two alicyclic rings and A-ring opened steroidal keto acids. High resolution MS data support the assignment of several of the so-called 'O3' species. When fractions of distilled, esterified, OSPW acid-extractable organics were examined, the putative aromatics were mainly present in a high boiling fraction; when examined by argentation thin layer chromatography, some were present in a fraction with a retardation factor between that of the methyl esters of synthetic monoalicyclic and monoaromatic acids. Ultraviolet absorption spectra of these fractions indicated the presence of benzenoid moieties. SFS of model octahydro- and tetrahydrophenanthroic acids produced emissions at the characteristic excitation wavelengths observed in some OSPW extracts, consistent with the postulations from ultraviolet spectroscopy and mass spectrometry data. We suggest the acids originate from extensive biodegradation of C-ring monoaromatic steroid hydrocarbons and offer a means of differentiating residues at different biodegradation stages in tailings ponds. Structural similarities with estrone and estradiol imply that such compounds may account for some of the environmental estrogenic activity reported in OSPW acid-extractable organics and naphthenic acids.
Abstract-For the last 20 years, studies conducted in North America, Scandinavia, and New Zealand have shown that pulp and paper mill effluents affect fish reproduction. Despite the level of effort applied, few leads are available regarding the factors responsible. Effluents affect reproduction in multiple fish species, as evidenced by decreased gonad size, decreased circulating and gonadal production of reproductive steroids, altered expression of secondary sex characteristics, and decreased egg production. Several studies also have shown that effluent constituents are capable of accumulating in fish and binding to sex steroid receptors/ binding proteins. Studies aimed at isolating biologically active substances within the pulping and papermaking process have provided clues about their source, and work has progressed in identifying opportunities for in-mill treatment technologies. Following comparisons of manufacturing processes and fish responses before and after process changes, it can be concluded that effluent from all types of mill processes are capable of affecting fish reproduction and that any improvements could not be attributed to a specific process modification (because mills normally performed multiple modifications simultaneously). Improved reproductive performance in fish generally was associated with reduced use of molecular chlorine, improved condensate handling, and liquor spill control. Effluent biotreatment has been effective in reducing some effects, but biotreated effluents also have shown no difference or an exacerbation of effects. The role of biotreatment in relation to effects on fish reproduction remains unclear and needs to be resolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.