The pulp and paper industry in Canada is developing technology for the production and use of nanocrystalline cellulose (NCC). A key component of the developmental work is an assessment of potential environmental risks. Towards this goal, NCC samples as well as carboxyl methyl cellulose (CMC), a surrogate of the parent cellulosic material, were subjected to an ecotoxicological evaluation. This involved toxicity tests with rainbow trout hepatocytes and nine aquatic species. The hepatocytes were most sensitive (EC20s between 10 and 200 mg/l) to NCC, although neither NCC nor CMC caused genotoxicity. In tests with the nine species, NCC affected the reproduction of the fathead minnow at (IC25) 0.29 g/l, but no other effects on endpoints such as survival and growth occurred in the other species at concentrations below 1 g/l, which was comparable to CMC. Based on this ecotoxicological characterization, NCC was found to have low toxicity potential and environmental risk.
Abstract-For the last 20 years, studies conducted in North America, Scandinavia, and New Zealand have shown that pulp and paper mill effluents affect fish reproduction. Despite the level of effort applied, few leads are available regarding the factors responsible. Effluents affect reproduction in multiple fish species, as evidenced by decreased gonad size, decreased circulating and gonadal production of reproductive steroids, altered expression of secondary sex characteristics, and decreased egg production. Several studies also have shown that effluent constituents are capable of accumulating in fish and binding to sex steroid receptors/ binding proteins. Studies aimed at isolating biologically active substances within the pulping and papermaking process have provided clues about their source, and work has progressed in identifying opportunities for in-mill treatment technologies. Following comparisons of manufacturing processes and fish responses before and after process changes, it can be concluded that effluent from all types of mill processes are capable of affecting fish reproduction and that any improvements could not be attributed to a specific process modification (because mills normally performed multiple modifications simultaneously). Improved reproductive performance in fish generally was associated with reduced use of molecular chlorine, improved condensate handling, and liquor spill control. Effluent biotreatment has been effective in reducing some effects, but biotreated effluents also have shown no difference or an exacerbation of effects. The role of biotreatment in relation to effects on fish reproduction remains unclear and needs to be resolved.
Reproductive effects have been recorded in wild fish in waters receiving pulp mill effluent (PME) since the mid to late 1980s. Laboratory assays with fathead minnow (FHM; Pimephales promelas) have been developed to better understand fish responses to PME. However, observations from laboratory studies have been variable, making it difficult to establish cause/effect relationships. A lack of environmental relevance in these laboratory studies may have contributed to the variability observed. The objectives of the present study were, first, to determine the effects of bleached kraft PME (BKME) on FHM under environmentally realistic conditions (i.e., ambient water and effluent quality) and, second, to determine the suitability of pair-breeding FHM to better link BKME-induced changes in indicators at the biochemical, individual, and population levels. A mobile bioassay trailer was situated on-site at a bleached kraft mill for 60 d, allowing supply of both ambient water (Lake Superior, Canada) and final BKME. The reproductive output of FHM was initially assessed for 21 d to obtain baseline data pre-exposure. At the end of the pre-exposure period, selected breeding pairs were exposed to final BKME (100% v/v and 1% v/v) for 21 d. Results demonstrated a stimulatory response pattern at 1% BKME (e.g., increased egg production) compared to control. In the 100% treatment, spawning events were reduced and fewer eggs were produced during the first two weeks of exposure. Exposure to 100% (v/v) BKME also resulted in ovipositor development in males and development of male secondary sex characteristics in females. Obtaining pre-exposure data and use of pair-breeding FHM in this assay gave a sensitive indication of effluent effects and allowed accurate comparisons of endpoints to be made.
This study investigates factors affecting reproduction in fish exposed to pulp and paper mill effluents by comparing effluents from countries with varying levels of documented effects. To explore the hypothesis of wood as a common source of endocrine disrupting compounds, feedstocks from each country were analyzed. Analyses included in vitro assays for androgenic activity (binding to goldfish testis androgen receptors), estrogenic activity (yeast estrogen screen), and neurotransmitter enzyme inhibition (monoamine oxidase and glutamic acid decarboxylase). Chemical analyses included conventional extractives, known androgens, and gas chromatograph index (GCI) profiles. All effluents and wood contained androgenic activity, particularly in nonpolar fractions, although known androgens were undetected. Effluents with low suspended solids, having undergone conventional biotreatment had lower androgenic activities. Estrogenic activity was only associated with Brazilian effluents and undetected in wood. All effluents and wood inhibited neurotransmitter enzymes, predominantly in polar fractions. Kraft elemental chlorine free mills were associated with the greatest neurotransmitter inhibition. Effluent and wood GCI profiles were correlated with androgenic activity and neurotransmitter enzyme inhibition. Differences in feedstock bioactivities were not reflected in effluents, implying mill factors mitigate bioactive wood components. No differences in bioactivities could be discerned on the basis of country of origin, thus we predict effluents in regions lacking monitoring would affect fish reproduction and therefore recommend implementing such programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.