Graphical abstractHighlights► Macrocyclic lactones share some structural and physico-chemical properties. ► The kinetic-dynamic differences of these compounds should be addressed under in vivo standardized conditions. ► Lower concentrations of moxidectin were obtained in resistant Haemonchus contortus. ► Moxidectin showed a higher efficacy against resistant H. contortus. ► The P-glycoprotein expression in H. contortus was increased after ivermectin treatment.
Flubendazole (FLBZ) is a broad-spectrum benzimidazole anthelmintic compound used in pigs, poultry and humans. Its potential for parasite control in ruminant species is under investigation. The objective of the work described here was to identify the main enzymatic pathways involved in the hepatic and extra-hepatic biotransformation of FLBZ in sheep. Microsomal and cytosolic fractions obtained from sheep liver and duodenal mucosa metabolised FLBZ into a reduced FLBZ metabolite (red-FLBZ). The keto-reduction of FLBZ led to the prevalent (approximately 98%) stereospecific formation of one enantiomeric form of red-FLBZ. The amounts of red-FLBZ formed in liver subcellular fractions were 3-4-fold higher (P<0.05) compared to those observed in duodenal subcellular fractions. This observation correlates with the higher (P<0.05) carbonyl reductase (CBR) activities measured in the liver compared to the duodenal mucosa. No metabolic conversion was observed following FLBZ or red-FLBZ incubation with sheep ruminal fluid. Sheep liver microsomes failed to convert red-FLBZ into FLBZ. However, this metabolic reaction occurred in liver microsomes prepared from phenobarbital-induced rats, which may indicate a cytochrome P450-mediated oxidation of red-FLBZ. A NADPH-dependent CBR is proposed as the main enzymatic system involved in the keto-reduction of FLBZ in sheep. CBR substrates such as menadione and mebendazole (a non-fluoride analogue of FLBZ), inhibited this liver microsomal enzymatic reaction, which may confirm the involvement of a CBR enzyme in FLBZ metabolism in sheep. This research is a further contribution to the understanding of the metabolic fate of a promissory alternative compound for antiparasitic control in ruminant species.
The goals were to determine the ivermectin (IVM) plasma pharmacokinetics, tissue and egg residue profiles, and in vitro metabolism in laying hens. Experiments conducted were (1) 8 hens were intravenously treated with IVM and blood samples taken; (2) 88 hens were treated with IVM administered daily in water (5 days) (40 were kept and their daily eggs collected; 48 were sacrificed in groups (n = 8) at different times and tissue samples taken and analyzed); (3) IVM biotransformation was studied in liver microsomes. Pharmacokinetic parameters were AUC = 85.1 ng·day/mL, Vdss = 4.43 L/kg, and T1/2el = 1.73 days. Low IVM tissue residues were quantified with the highest measured in liver and skin+fat. IVM residues were not found in egg white, but significant amounts were quantified in yolk. Residues measured in eggs were greater than some MRL values, suggesting that a withdrawal period would be necessary for eggs after IVM use in laying hens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.