The "capacitive mixing" (CAPMIX) is one of the techniques aimed at the extraction of energy from the salinity difference between sea and rivers. It is based on the rise of the voltage between two electrodes, taking place when the salt concentration of the solution in which they are dipped is changed. We study the rise of the potential of activated carbon electrodes in NaCl solutions, as a function of their charging state. We evaluate the effect of the modification of the materials obtained by adsorption of charged molecules. We observe a displacement of the potential at which the potential rise vanishes, as predicted by the electric double layer theories. Moreover, we observe a saturation of the potential rise at high charging states, to a value that is nearly independent of the analyzed material. This saturation represents the most relevant element that determines the performances of the CAPMIX cell under study; we attribute it to a kinetic effect.
The conversion of heat into current can be obtained by a process with two stages. In the first one, the heat is used for distilling a solution and obtaining two flows with different concentrations. In the second stage, the two flows are sent to an electrochemical cell that produces current by consuming the concentration difference. In this paper, we propose such an electrochemical cell, working with water solutions of zinc chloride. The cell contains two electrodes, made respectively of zinc and silver covered by silver chloride. The operation of the cell is analogous to that of the capacitive mixing and of the "mixing entropy battery": the electrodes are charged while dipped in the concentrated solution and discharged when dipped in the diluted solution. The cyclic operation allows us to extract a surplus of energy, at the expense of the free energy of the concentration difference. We evaluate the feasibility of such a cell for practical applications and find that a power up to 2 W per m 2 of the surface of the electrodes can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.