Improvements have been made to the Monte Carlo modelling used to calculate the response of the neutron survey instruments most commonly used in the UK, for neutron energies up to 20 MeV. The improved modelling of the devices includes the electronics and battery pack, allowing better calculations of both the energy and angle dependence of response. These data are used to calculate the response of the instruments in rotationally and fully isotropic, as well as unidirectional fields. Experimental measurements with radionuclide sources and monoenergetic neutron fields have been, and continue to be made, to test the calculated response characteristics. The enhancements to the calculations have involved simulation of the sensitivity of the response to variations in instrument manufacture, and will include the influence of the user and floor during measurements. The practical implications of the energy and angle dependence of response, variations in manufacture, and the influence of the user are assessed by folding the response characteristics with workplace energy and direction distributions.
Bonner sphere (BS) sets which use activation foils as the central thermal neutron sensor have advantages over active BS systems in certain environments, for example, pulsed fields, or fields with high photon components. In such environments, they may be the only type of neutron spectrometer which can be used. This paper describes work, using both measurements and calculations, to validate the response functions for a BS set based on gold activation foils. As an illustration of the use of such a system, a measurement is described of the contaminant neutron spectrum in the treatment room of a 21 MV hospital linear accelerator providing photon beams for radiotherapy.
Neutron area survey instruments are designed to have an approximately isotropic response. In practice, the response cannot be perfectly isotropic for instruments that do not have spherical symmetry, and for all instruments it is modified by the inclusion of batteries, electronics, handles, etc. This affects the ability of the survey instrument to measure accurately an isotropic dose equivalent quantity. Measurements of the angle dependence of response for four of the most commonly used designs of survey instrument (Harwell 0949, Mark 7 NRM, NM2 and Studsvik 2202D) have been performed in a low-scatter room using radionuclide and monoenergetic neutron sources. The Monte Carlo code MCNP has been used to model the responses and to investigate their sensitivity to the polyethylene density, counting gas pressure and other manufacturing tolerances. Preliminary modelling results are presented here.
One of the most common radionuclide neutron sources used for the calibration of detectors is (252)Cf. However, these sources also contain (250)Cf, which is present in the material from which the sources are made, and (248)Cm, which is formed as the daughter of (252)Cf via alpha-decay. Both decay by spontaneous fission with longer half-lives than (252)Cf. Consequently, as the source becomes older, the emission rate does not follow the decay curve of (252)Cf. Fits have been made to emission rate measurements of (252)Cf sources at NPL spanning over 30 y to deduce their (250)Cf and (248)Cm content. The emission rate of a source can be significantly underestimated if the presence of (250)Cf and (248)Cm is not taken into account, and this has been investigated for a typical (252)Cf source. The importance of this problem to other calibration laboratories and users of (252)Cf sources is emphasised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.