OBJECTIVE-Intravenous insulin infusion rapidly increases plasma insulin, yet glucose disposal occurs at a much slower rate. This delay in insulin's action may be related to the protracted time for insulin to traverse the capillary endothelium. An increased delay may be associated with the development of insulin resistance. The purpose of the present study was to investigate whether bypassing the transendothelial insulin transport step and injecting insulin directly into the interstitial space would moderate the delay in glucose uptake observed with intravenous administration of the hormone. RESEARCH DESIGN AND METHODS-Intramuscular injec-tions of saline (n ϭ 3) or insulin (n ϭ 10) were administered directly into the vastus medialis of anesthetized dogs. Injections of 0.3, 0.5, 0.7, 1.0, and 3.0 units insulin were administered hourly during a basal insulin euglycemic glucose clamp (0.2mU ⅐ minRESULTS-Unlike the saline group, each incremental insulin injection caused interstitial (lymph) insulin to rise within 10 min, indicating rapid diffusion of the hormone within the interstitial matrix. Delay in insulin action was virtually eliminated, indicated by immediate dose-dependent increments in hindlimb glucose uptake. Additionally, bypassing insulin transport by direct injection into muscle revealed a fourfold greater sensitivity to insulin of in vivo muscle tissue than previously reported from intravenous insulin administration.CONCLUSIONS-Our results indicate that the transport of insulin to skeletal muscle is a rate-limiting step for insulin to activate glucose disposal. Based on these results, we speculate that defects in insulin transport across the endothelial layer of skeletal muscle will contribute to insulin resistance. Diabetes 57:828-835, 2008
OBJECTIVE Insulin resistance is a powerful risk factor for Type 2 diabetes and a constellation of chronic diseases, and is most commonly associated with obesity. We examined if factors other than obesity are more substantial predictors of insulin sensitivity under baseline, non-stimulated conditions. DESIGN AND METHODS Metabolic assessment was performed in healthy dogs (n=90). Whole-body sensitivity from euglycemic clamps (SICLAMP) was the primary outcome variable, and was measured independently by IVGTT (n=36). Adiposity was measured by MRI (n=90), and glucose-stimulated insulin response was measured from hyperglycemic clamp or IVGTT (n=86 and 36, respectively). RESULTS SICLAMP was highly variable (5.9 to 75.9 dl/min per kg per μU/ml). Despite narrow range of body weight (mean, 28.7±0.3 kg), adiposity varied ∼8-fold and was inversely correlated with SICLAMP (p<0.025). SICLAMP was negatively associated with fasting insulin, but most strongly associated with insulin clearance. Clearance was the dominant factor associated with sensitivity (r=0.53, p<0.00001), whether calculated from clamp or IVGTT. CONCLUSIONS These data suggest that insulin clearance contributes substantially to insulin sensitivity, and may be pivotal in understanding the pathogenesis of insulin resistance. We propose that hyperinsulinemia due to reduction in insulin clearance is responsible for insulin resistance secondary to changes in body weight.
We investigated whether rimonabant, a type 1 cannabinoid receptor antagonist, reduces visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in dogs maintained on a hypercaloric high-fat diet (HHFD). To determine whether energy expenditure contributed to body weight changes, we also calculated resting metabolic rate. Twenty male dogs received either rimonabant (1.25 mg.kg(-1).day(-1), orally; n = 11) or placebo (n = 9) for 16 wk, concomitant with a HHFD. VAT, SAT, and nonfat tissue were measured by magnetic resonance imaging. Resting metabolic rate was assessed by indirect calorimetry. By week 16 of treatment, rimonabant dogs lost 2.5% of their body weight (P = 0.029), whereas in placebo dogs body weight increased by 6.2% (P < 0.001). Rimonabant reduced food intake (P = 0.027), concomitant with a reduction of SAT by 19.5% (P < 0.001). In contrast with the VAT increase with placebo (P < 0.01), VAT did not change with rimonabant. Nonfat tissue remained unchanged in both groups. Body weight loss was not associated with either resting metabolic rate (r(2) = 0.24; P = 0.154) or food intake (r(2) = 0.24; P = 0.166). In conclusion, rimonabant reduced body weight together with a reduction in abdominal fat, mainly because of SAT loss. Body weight changes were not associated with either resting metabolic rate or food intake. The findings provide evidence of a peripheral effect of rimonabant to reduce adiposity and body weight, possibly through a direct effect on adipose tissue.
A complex sequence of steps is required for insulin to cause glucose uptake. Impairment of any one of these steps can contribute to insulin resistance. We observed the effect of insulin resistance induced by hyperlipidemia on the dynamics of insulin injected into skeletal muscle. Basal insulin euglycemic clamps (0.2 mU/min/kg) with or without lipid infusions (20% at 1.5 ml/min) were done on anesthetized dogs. Sequential insulin doses were administered by intramuscular injection directly into the vastus medialis of one hindlimb, using the contralateral leg for comparison. Intramuscular insulin injection in normal animals caused a clear dose-dependent increment in interstitial insulin levels, as well as dose-dependent increase in leg glucose uptake. In a second group of animals, lipid was infused before and during intramuscular insulin injection to cause systemic increase in free fatty acids (FFAs). In sharp contrast, systemic lipid infusion caused insulin resistance, indicated by reduced glucose infusion required to maintain euglycemia, and prevented injection-induced increase in lymphatic insulin and leg glucose uptake observed without lipid. The injected insulin was instead detected in the venous outflow from the leg. Lipid infusion caused intramuscular insulin to be diverted from interstitium into the capillary circulation, preventing a rise in intersitial insulin and any increase in local leg glucose uptake. The diversion of insulin from the interstitium under hyperlipidemic conditions may play a role in the insulin resistance observed coincident with elevated nocturnal FFAs as is observed in obesity.
OBJECTIVEObesity causes insulin resistance, which has been interpreted as reduced downstream insulin signaling. However, changes in access of insulin to sensitive tissues such as skeletal muscle may also play a role. Insulin injected directly into skeletal muscle diffuses rapidly through the interstitial space to cause glucose uptake. When insulin resistance is induced by exogenous lipid infusion, this interstitial diffusion process is curtailed. Thus, the possibility exists that hyperlipidemia, such as that seen during obesity, may inhibit insulin action to muscle cells and exacerbate insulin resistance. Here we asked whether interstitial insulin diffusion is reduced in physiological obesity induced by a high-fat diet (HFD).RESEARCH DESIGN AND METHODSDogs were fed a regular diet (lean) or one supplemented with bacon grease for 9–12 weeks (HFD). Basal insulin (0.2 mU · min−1 · kg−1) euglycemic clamps were performed on fat-fed animals (n = 6). During clamps performed under anesthesia, five sequential doses of insulin were injected into the vastus medialis of one hind limb (INJ); the contralateral limb (NINJ) served as a control.RESULTSINJ lymph insulin showed an increase above NINJ in lean animals, but no change in HFD-fed animals. Muscle glucose uptake observed in lean animals did not occur in HFD-fed animals.CONCLUSIONSInsulin resistance induced by HFD caused a failure of intramuscularly injected insulin to diffuse through the interstitial space and failure to cause glucose uptake, compared with normal animals. High-fat feeding prevents the appearance of injected insulin in the interstitial space, thus reducing binding to skeletal muscle cells and glucose uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.