OBJECTIVE Insulin resistance is a powerful risk factor for Type 2 diabetes and a constellation of chronic diseases, and is most commonly associated with obesity. We examined if factors other than obesity are more substantial predictors of insulin sensitivity under baseline, non-stimulated conditions. DESIGN AND METHODS Metabolic assessment was performed in healthy dogs (n=90). Whole-body sensitivity from euglycemic clamps (SICLAMP) was the primary outcome variable, and was measured independently by IVGTT (n=36). Adiposity was measured by MRI (n=90), and glucose-stimulated insulin response was measured from hyperglycemic clamp or IVGTT (n=86 and 36, respectively). RESULTS SICLAMP was highly variable (5.9 to 75.9 dl/min per kg per μU/ml). Despite narrow range of body weight (mean, 28.7±0.3 kg), adiposity varied ∼8-fold and was inversely correlated with SICLAMP (p<0.025). SICLAMP was negatively associated with fasting insulin, but most strongly associated with insulin clearance. Clearance was the dominant factor associated with sensitivity (r=0.53, p<0.00001), whether calculated from clamp or IVGTT. CONCLUSIONS These data suggest that insulin clearance contributes substantially to insulin sensitivity, and may be pivotal in understanding the pathogenesis of insulin resistance. We propose that hyperinsulinemia due to reduction in insulin clearance is responsible for insulin resistance secondary to changes in body weight.
We investigated whether rimonabant, a type 1 cannabinoid receptor antagonist, reduces visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in dogs maintained on a hypercaloric high-fat diet (HHFD). To determine whether energy expenditure contributed to body weight changes, we also calculated resting metabolic rate. Twenty male dogs received either rimonabant (1.25 mg.kg(-1).day(-1), orally; n = 11) or placebo (n = 9) for 16 wk, concomitant with a HHFD. VAT, SAT, and nonfat tissue were measured by magnetic resonance imaging. Resting metabolic rate was assessed by indirect calorimetry. By week 16 of treatment, rimonabant dogs lost 2.5% of their body weight (P = 0.029), whereas in placebo dogs body weight increased by 6.2% (P < 0.001). Rimonabant reduced food intake (P = 0.027), concomitant with a reduction of SAT by 19.5% (P < 0.001). In contrast with the VAT increase with placebo (P < 0.01), VAT did not change with rimonabant. Nonfat tissue remained unchanged in both groups. Body weight loss was not associated with either resting metabolic rate (r(2) = 0.24; P = 0.154) or food intake (r(2) = 0.24; P = 0.166). In conclusion, rimonabant reduced body weight together with a reduction in abdominal fat, mainly because of SAT loss. Body weight changes were not associated with either resting metabolic rate or food intake. The findings provide evidence of a peripheral effect of rimonabant to reduce adiposity and body weight, possibly through a direct effect on adipose tissue.
The insulinotropic intestinal hormone GLP-1 is thought to exert one of its effects by direct action on the pancreatic beta-cell receptors. GLP-1 is rapidly degraded in plasma, such that only a small amount of the active form reaches the pancreas, making it questionable whether this amount is sufficient to produce a direct incretin effect. The aim of our study was to assess, in a dog model, the putative incretin action of GLP-1 acting directly on the beta-cell in the context of postprandial rises in GLP-1 and glucose. Conscious dogs were fed a high-fat, high-carbohydrate meal, and insulin response was measured. We also infused systemic glucose plus GLP-1, or glucose alone, to simulate the meal test values of these variables and measured insulin response. The results were as follows: during the meal, we measured a robust insulin response (52 +/- 9 to 136 +/- 14 pmol/l, P < 0.05 vs. basal) with increases in portal glucose and GLP-1 but only limited increases in systemic glucose (5.3 +/- 0.1 to 5.7 +/- 0.1 mmol/l, P = 0.1 vs. basal) and GLP-1 (6 +/- 0 to 9 +/- 1 pmol/l, P = 0.5 vs. basal). Exogenous infusion of systemic glucose and GLP-1 produced a moderate increase in insulin (43 +/- 5 to 84 +/- 15 pmol/l, 43% of the meal insulin). However, infusion of glucose alone, without GLP-1, produced a similar insulin response (37 +/- 6 to 82 +/- 14 pmol, 53% of the meal insulin, P = 0.7 vs. glucose and GLP-1 infusion). In conclusion, in dogs with postprandial rises in systemic glucose and GLP-1, the hormone might not have a direct insulinotropic effect and could regulate glycemia via indirect, portohepatic-initiated neural mechanisms.
OBJECTIVEObesity causes insulin resistance, which has been interpreted as reduced downstream insulin signaling. However, changes in access of insulin to sensitive tissues such as skeletal muscle may also play a role. Insulin injected directly into skeletal muscle diffuses rapidly through the interstitial space to cause glucose uptake. When insulin resistance is induced by exogenous lipid infusion, this interstitial diffusion process is curtailed. Thus, the possibility exists that hyperlipidemia, such as that seen during obesity, may inhibit insulin action to muscle cells and exacerbate insulin resistance. Here we asked whether interstitial insulin diffusion is reduced in physiological obesity induced by a high-fat diet (HFD).RESEARCH DESIGN AND METHODSDogs were fed a regular diet (lean) or one supplemented with bacon grease for 9–12 weeks (HFD). Basal insulin (0.2 mU · min−1 · kg−1) euglycemic clamps were performed on fat-fed animals (n = 6). During clamps performed under anesthesia, five sequential doses of insulin were injected into the vastus medialis of one hind limb (INJ); the contralateral limb (NINJ) served as a control.RESULTSINJ lymph insulin showed an increase above NINJ in lean animals, but no change in HFD-fed animals. Muscle glucose uptake observed in lean animals did not occur in HFD-fed animals.CONCLUSIONSInsulin resistance induced by HFD caused a failure of intramuscularly injected insulin to diffuse through the interstitial space and failure to cause glucose uptake, compared with normal animals. High-fat feeding prevents the appearance of injected insulin in the interstitial space, thus reducing binding to skeletal muscle cells and glucose uptake.
Visceral adiposity is strongly associated with insulin resistance; however, little evidence directly demonstrates that visceral fat per se impairs insulin action. Here, we examine the effects of the surgical removal of the greater omentum and its occupying visceral fat, an omentectomy (OM), on insulin sensitivity (SI) and β‐cell function in nonobese dogs. Thirteen male mongrel dogs were used in this research study; animals were randomly assigned to surgical treatment with either OM (n = 7), or sham‐surgery (SHAM) (n = 6). OM failed to generate measurable changes in body weight (+2%; P = 0.1), or subcutaneous adiposity (+3%; P = 0.83) as assessed by magnetic resonance imaging (MRI). The removal of the greater omentum did not significantly reduce total visceral adipose volume (−7.3 ± 6.4%; P = 0.29); although primary analysis showed a trend for OM to increase SI when compared to sham operated animals (P = 0.078), further statistical analysis revealed that this minor reduction in visceral fat alleviated insulin resistance by augmenting SI of the periphery (+67.7 ± 35.2%; P = 0.03), as determined by the euglycemic‐hyperinsulinemic clamp. Insulin secretory response during the hyperglycemic step clamp was not directly influenced by omental fat removal (presurgery 6.82 ± 1.4 vs. postsurgery: 6.7 ± 1.2 pmol/l/mg/dl, P = 0.9). These findings provide new evidence for the deleterious role of visceral fat in insulin resistance, and suggest that a greater OM procedure may effectively improve insulin sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.