We demonstrate the production of cryogenic beams of heteronuclear molecules from the matrix isolation sublimation (MISu) technique. A sapphire mirror serves as a substrate whereupon a solid Ne matrix is grown. Atoms of Li, H, Ca, and C are implanted into the matrix via subsequent laser ablation of different solid precursors such as Ca, Li, LiH, and graphite. The matrix is sublimated into vacuum generating a cryogenic beam of Ne carrying the previously isolated neutral atomic and molecular species. A compact and low energy electron source and time-of-flight mass spectrometer was designed to fit this system at low temperature. With electron ionization time-of-flight mass spectrometry, we analyze the species coming from MISu and demonstrate the formation of heteronuclear molecules in the matrix. In this first study, we produced LiCa from the sequential implantation of Li and Ca into the matrix and some clusters of CLi after Li and C ablation. Also from ablation of a single LiH pellet, we observed clusters of LiH. This novel technique opens up the opportunity to generate cryogenic beams of different molecules for precision physics and chemistry studies. Laser or microwave high resolution spectroscopy of a molecular beam benefits from low translational and rovibrational temperatures and forward velocities, such as the ones produced in this technique. Toward the prospect of enhancing the molecular formation, we introduce a new method to study the atomic diffusion of Li and Ca in the Ne matrix via laser spectroscopy during sublimation. We estimate a small diffusion coefficient at 7 K, but a surprisingly linear atomic dispersion during sublimation. The method is extensive to other species and matrices.
Cold cations, electrons and anions are ubiquitous in space, participate in star formation chemistry and are relevant to studies on the origin of molecular biology homochirality. We report on a system to generate and trap these species in the laboratory. Laser ablation of a solid target (LiH) facing a sublimating Ne matrix generates cold electrons, anions, and cations. Axial energy distributions (of $${{{{{{\rm{e}}}}}}}^{-}$$ e − , $${{{{{{\rm{H}}}}}}}^{\pm }$$ H ± and $${{{{{{\rm{Li}}}}}}}^{\pm }$$ Li ± ) peaked at 0–25 meV are obtained in a Penning trap at 90 mT and 0.5 eV barrier. Anions can be guided and neutralized with low recoil energy by near–threshold photodetachment. An immediate prospect for this $${{{{{{\rm{H}}}}}}}^{-}$$ H − source is to load hydrogen atoms into the ALPHA antihydrogen trap at CERN toward direct spectroscopic comparison of both conjugated species beyond 13 significant figures. The production is potentially scalable and adaptable to different species including deuterium and tritium, relevant for neutrino mass and fusion research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.