CLE (CLV3/ESR) is one of the most important groups of peptide phytohormones: its members regulate the development of various plant organs and tissues, as well as interaction with some parasites and symbionts and response to environmental factors. In this regard, the identification and study of the CLE genes encoding the peptides of this group in cultivated plants are of great practical interest. Relatively little is known about the functions of CLE peptides in potato, since the CLE genes of the potato Solanum phureja Juz. et Buk. were characterized only in 2021. At the same time, potato includes plenty of tuberous species of the genus Solanum L., both wild and cultivated, and the diversity of its forms may depend on differences in the sequences of CLE genes. In this work, we performed a search for and analysis of the CLE gene sequences in three wild potato species (S. bukasovii Juz., S. verrucosum Schltdl., S. commersonii Dunal) and four cultivated species (S. chaucha Juz. et Buk., S. curtilobum Juz. et Buk., S. juzepczukii Juz. et Buk., S. ajanhuiri Juz. et Buk.). In total, we identified 332 CLE genes in the analyzed potato species: from 40 to 43 genes of this family for each potato species. All potato species taken for analysis had homologues of previously identified S. phureja CLE genes; at the same time, the CLE42 gene, which is absent from the S. phureja genome, is present in all other analyzed potato species. Polymorphism of CLE proteins of S. commersonii is significantly higher than that of other analyzed potato species, due to the fact that S. commersonii grows in places outside the growing areas of other potato species and this potato is probably not one of the ancestors of cultivated potato. We also found examples of polymorphism of domains of CLE proteins that carried different functions. Further study of potato CLE proteins will reveal their role in development, including regulation of productivity in this important agricultural crop.
Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.