Cold acclimation was followed in three cultivars of winter wheat (Triticum aestivum L.) that differ in freezing tolerance, using root growth as the indicator. During acclimation (followed through 7 d at 4 degrees C), growth rate progressively recovered. The recovery was fast in the tolerant, slow in the sensitive cultivars. The development of freezing tolerance was followed by a challenging cold shock administered after various time intervals of acclimation. Acclimation proceeded faster in the tolerant cultivars. Microtubules were monitored during the acclimation period. A rapid, but transient partial disassembly in the tolerant cultivars preceded the formation of cold-stable microtubules and the recovery of growth rate. In contrast, this transient disassembly was absent in the sensitive cultivar. When a transient disassembly was artificially generated by a pulse-treatment with the antimicrotubular herbicide pronamide, this could induce freezing tolerance. The appearance of cold-stable microtubules was accompanied by a reduced abundance of type TUA1/2 alpha-tubulin isotypes. These findings are discussed with respect to a role of microtubule disassembly in the sensing of low-temperature stress.
In winter wheat, the tubulin and 60 kDa-phosphorylated proteins/actin ratio is considerably higher in the roots than in the leaves. Differences in the content of the main cytoskeletal proteins were also found in the leaves of the different cultivars. It is suggested that the lower amount of the tubulin and 60 kDa-phosphorylated proteins and higher content of actin determine the greater tubulin cytoskeletal stability in the leaves and their higher frost resistance, as compared with the roots. Also, it is possible that the higher content of the tubulin and 60 kDa-phosphorylated proteins defines the lower microtubule (MT) stability in the leaves of the low frost resistant cultivar than in the leaves of the more frost resistant ones. In the roots and leaves of the low frost resistant cultivar, the low stability of the numerous tubulin structures is apparently one reason for the abscisic acid (ABA)-induced reduction of the cytoskeletal and 60 kDa-phosphorylated proteins in the cells. The cold acclimation compensated the ABA effect in the roots of the very frost resistant cultivar in the most extent. This suggests the existence of the different pathways in the increased plant cell frost resistance through the action of ABA and low temperature.
The roots and leaves of 7-day seedlings of three winter wheat cultivars differing in frost resistant were used to study changes in lectin activity under cytoskeleton modifiers (DMSO-7%; colchicine-1 m m; oryzalin-15 microm; cytochalasin B-15 microm) of non-hardened (23 degrees C) and hardened (2-3 degrees C, 3-7 day) plants. Plants were grown with ABA (30 microm) or without ABA. Pretreatment with colchicine, oryzalin [inhibitors of microtubules (MT) polymerization], cytochalasin B [inhibitor of microfilament (MF) polymerization] increased the activity of cell wall lectins, although pretreatment with DMSO (stabilizer of microtubules) decreased the activity. Both hardening and ABA decreased the effect of the cytoskeletal modifiers. These results could be explained by the appearance of tolerant MTs with less affinity. It is probable that increase in the activity of cell wall lectins may be the compensatory mechanism which stabilizes the cytoskeleton structure in conditions tending to disrupt it. The genotype with low resistance had higher sensitivity of lectin activity to cytoskeleton modifiers than the frost resistant genotype. The results suggest that leaves have more stable MTs and MFs and stronger MT-MF binding than roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.