Parthenogenesis induced by cytoplasmatically inherited Wolbachia bacteria has been found in a number of arthropod species, mainly Hymenoptera. Previously, two different forms of diploidy restoration have been reported to underlie parthenogenesis induction in Hymenoptera by Wolbachia. Both are a form of gamete duplication, but each differs in their timing. We investigated the cytology of the early embryonic development of a Wolbachia-infected strain of the parasitoid wasp Leptopilina clavipes and compared it with that of an uninfected sexual strain. Both strains have a similar meiosis. In the infected parthenogenetic strain, diploidy is restored by anaphase restitution during the first somatic mitosis, similar to Trichogramma, but not to Muscidifurax. Our results confirm the occurrence of different cytological mechanisms of diploidy restoration associated with parthenogenesis-inducing Wolbachia in the order Hymenoptera.
An air-drying technique was developed that provided well-spread somatic metaphases of the potato Solanum tuberosum. With Giemsa C-banding, the individual chromosomes (x = 12) could be identified. Some bands are different from those in S. phureja. The technique provides a means to investigate structural differences between genomes.Key words: C-banding, chromosomes, potato.
Both arrhenotokous and thelytokous reproduction are known to occur in the parasitoid wasp Venturia canescens. The cytological mechanism of thelytoky was previously reported to involve the formation of a restitution metaphase after the reduction division, but the exact nature of the subsequent divisions, whether reductional or equational, remained unclear. We reinvestigated the cytological mechanisms in a thelytokous strain collected in France. Our observations confirm previous results, but an equational and not a reduction division was observed after restitution. This type of reproduction can be classified as central fusion automictic parthenogenesis. In two arrhenotokous strains the normal pattern of oogenesis and syngamy of Hymenoptera was observed. In addition, we used PCR amplification to show that thelytoky in V. canescens is not caused by Wolbachia bacteria. The results are discussed in relation to maintenance of heterozygosity and female sex.
Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric C-band in each arm and 22 chromosomes have one in the longest arm. Two chromosomes have a slightly heterochromatic long arm and five chromosomes have an Ag-NOR at the terminal end of the long arm. Other banding patterns and sex chromosomes could not be revealed.
The insect order of Hymenoptera (ants, bees, sawflies, and wasps) consists almost entirely of haplodiploid species. Under haplodiploidy, males develop from unfertilized eggs and are haploid, whereas females develop from fertilized eggs and are diploid. Although diploid males commonly occur, haploid females have never been reported. In analyzing the phenomenon of gynandromorphism in the parasitoid wasp Nasonia vitripennis, we found a line that generates complete phenotypic females from unfertilized eggs. These females have ovaries, can lay eggs, and are haploid, as shown by cytological and flow cytometric analyses. The data show that diploidy is not necessary for female development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.