As photolithography is pushed to fabricate deep-sub wavelength devices for 90nm, 65nm and smaller technology nodes using available exposure tools (i.e., 248nm, 193nm steppers), photomask capability is becoming extremely critical. For example, PSM masks require more complicated processing; aggressive OPC makes the writing time longer and sometimes unpredictable; and, high MEEF imposes much more stringent demands on mask quality. Therefore, in order for any new lithography technology to be adopted into production, mask manufacturability must be studied thoroughly and carefully.In this paper we will present the mask manufacturability study on mask patterns created using Inverse Lithography Technology (ILT). Unlike conventional OPC methodologies, ILT uses a unique outcome-based technology to mathematically determine the mask features that produce the desired on-wafer results. ILT solves the most critical litho challenges of the deep sub-wavelength era. Potential benefits include: higher yield; expanded litho process windows; superb pattern fidelity at 90, 65 & 45-nm nodes; and reduced time-to-silicon -all without changing the existing lithography infrastructure and design-to-silicon flow.In this study a number of cell structures were selected and used as test patterns. "Luminized patterns" were generated for binary mask and attenuated phase-shift mask. Both conventional OPC patterns and "luminized patterns" were put on a test reticle side by side, and they all have a number of variations in term of correction aggressivity level and mask complexity. Mask manufacturability, including data fracturing, writing time, mask inspection, and metrology were studied. The results demonstrate that, by optimizing the inspection recipe, masks created using ILT technology can be made and qualified using current processes with a reasonable turn-around time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.