Mycotoxins represent a risk to the feed supply chain with an impact on economies and international trade. A high percentage of feed samples have been reported to be contaminated with more than one mycotoxin. In most cases, the concentrations were low enough to ensure compliance with the European Union (EU) guidance values or maximum admitted levels. However, mycotoxin co-contamination might still exert adverse effects on animals due to additive/synergistic interactions. Studies on the fate of mycotoxins during cereal processing, such as milling, production of ethanol fuels, and beer brewing, have shown that mycotoxins are concentrated into fractions that are commonly used as animal feed. Published data show a high variability in mycotoxin repartitioning, mainly due to the type of mycotoxins, the level and extent of fungal contamination, and a failure to understand the complexity of food processing technologies. Precise knowledge of mycotoxin repartitioning during technological processes is critical and may provide a sound technical basis for feed managers to conform to legislation requirements and reduce the risk of severe adverse market and trade repercussions. Regular, economical and straightforward feed testing is critical to reach a quick and accurate diagnosis of feed quality. The use of rapid methods represents a future challenge.
We investigated the influence of rumen-protected choline (RPC) supplementation on milk production, lipid metabolism and vitamin E status in dairy cows receiving a silage-based diet. Twenty-six Italian Holstein multiparous cows were assigned by weight and average production in the previous lactation, to one of two groups: control (no RPC supplementation) and RPC (supplemented with 20 g/day rumen-protected choline chloride). Treatment began 14 days before expected calving and continued for 30 days after parturition. Choline administration significantly increased milk production during the first month of lactation and also the concentration (and total secretion) of choline in milk, but did not affect fat or protein concentrations in milk, or plasma levels of glucose, beta-hydroxybutyrate, cholesterol and non-esterified fatty acids (NEFA). However, around parturition, NEFA concentrations in plasma were lower in treated animals than in controls, suggesting improved lipid metabolism as a result of choline supplementation. Choline supplementation also increased alpha-tocopherol plasma concentrations, suggesting a novel aspect in dairy cows.
This paper reviews current knowledge on two feedstuffs, that is, insect meal and fish by-products, as alternatives to conventional animal protein sources. After an introductory part that highlights the need for sustainable development of animal production, the alternative protein sources are discussed. In particular, after providing some indications on their production and supply focussing on EU, a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis was performed to identify the key factors that could help or impair the development of both protein sources production sectors. Finally, future perspectives are presented. The use of processed animal proteins derived from insects in farmed fish feeding is recognised by the EU legislation that authorises the use of proteins from seven insect species and the allowed substrates to rear insects. Insects have several advantages in nutritional value and the amino acid composition of their proteins generally meet animal requirements for good growth and health. The SWOT analysis indicated that insect meals can be considered as feed functional ingredients with beneficial properties that depend on the insect species, rearing system adopted, and the substrate used for their growth. Insects are expected to be increasingly used as a replacement for conventional animal-derived proteins, especially in aquafeeds. In the section regarding fishery and aquaculture by-products, the potential use of raw materials obtained during seafood processing is discussed. Peptides and amino acids recovered from as hydrolysed proteins can be used in animal feeds to partially substitute conventional protein feedstuffs thus providing nutrients, bioactive compounds and feed additives for animals. The SWOT analysis identified opportunities and weaknesses. Both the alternative protein sources are promising alternative feed ingredients for livestock production. HIGHLIGHTSThe sustainable development of animal production sector needs alternative protein sources for feeds formulation. Insects and fishery-and aquaculture by-products represent optimal alternative protein sources. A SWOT analysis has identified the key factors for the development of both protein sources production sectors. ARTICLE HISTORY
The present review examines the importance of choline in dairy cow nutrition. Choline is an essential nutrient for mammals when excess methionine and folate are not available in the diet. The requirement for choline can be met by dietary choline and by transmethylation reactions. Two types of functions for choline are known: functions of choline per se; functions as a methyl donor. The two principal methyl donors in animal metabolism are betaine, a metabolite of choline, and S-adenosyl-methionine, a metabolite of methionine. Choline and methionine are interchangeable with regard to their methyl group-furnishing functions. In adult ruminants, choline is extensively degraded in the rumen; for this reason dietary choline contributes insignificantly to the choline body pool and methyl group metabolism is generally conservative with a relatively low rate of methyl catabolism and an elevated rate of de novo synthesis of methyl groups via the tetrahydrofolate system. In dairy ruminants, the dietary availability of choline is still low, but the output of methylated compounds in milk is high, and precursors from the tetrahydrofolate pathway are limiting, especially at the onset of lactation. Therefore choline may be a limiting nutrient for milk production in high-yielding dairy cows.
Mycotoxins are known worldwide as fungus-produced toxins that adulterate a wide heterogeneity of raw feed ingredients and final products. Consumption of mycotoxins-contaminated feed causes a plethora of harmful responses from acute toxicity to many persistent health disorders with lethal outcomes; such as mycotoxicosis when ingested by animals. Therefore, the main task for feed producers is to minimize the concentration of mycotoxin by applying different strategies aimed at minimizing the risk of mycotoxin effects on animals and human health. Once mycotoxins enter the production chain it is hard to eliminate or inactivate them. This paper examines the most recent findings on different processes and strategies for the reduction of toxicity of mycotoxins in animals. The review gives detailed information about the decontamination approaches to mitigate mycotoxin contamination of feedstuffs and compound feed, which could be implemented in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.