A 1000-cow study across four European countries was undertaken to understand to what extent ruminant microbiomes can be controlled by the host animal and to identify characteristics of the host rumen microbiome axis that determine productivity and methane emissions. A core rumen microbiome, phylogenetically linked and with a preserved hierarchical structure, was identified. A 39-member subset of the core formed hubs in co-occurrence networks linking microbiome structure to host genetics and phenotype (methane emissions, rumen and blood metabolites, and milk production efficiency). These phenotypes can be predicted from the core microbiome using machine learning algorithms. The heritable core microbes, therefore, present primary targets for rumen manipulation toward sustainable and environmentally friendly agriculture.
This paper reviews current knowledge on two feedstuffs, that is, insect meal and fish by-products, as alternatives to conventional animal protein sources. After an introductory part that highlights the need for sustainable development of animal production, the alternative protein sources are discussed. In particular, after providing some indications on their production and supply focussing on EU, a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis was performed to identify the key factors that could help or impair the development of both protein sources production sectors. Finally, future perspectives are presented. The use of processed animal proteins derived from insects in farmed fish feeding is recognised by the EU legislation that authorises the use of proteins from seven insect species and the allowed substrates to rear insects. Insects have several advantages in nutritional value and the amino acid composition of their proteins generally meet animal requirements for good growth and health. The SWOT analysis indicated that insect meals can be considered as feed functional ingredients with beneficial properties that depend on the insect species, rearing system adopted, and the substrate used for their growth. Insects are expected to be increasingly used as a replacement for conventional animal-derived proteins, especially in aquafeeds. In the section regarding fishery and aquaculture by-products, the potential use of raw materials obtained during seafood processing is discussed. Peptides and amino acids recovered from as hydrolysed proteins can be used in animal feeds to partially substitute conventional protein feedstuffs thus providing nutrients, bioactive compounds and feed additives for animals. The SWOT analysis identified opportunities and weaknesses. Both the alternative protein sources are promising alternative feed ingredients for livestock production. HIGHLIGHTSThe sustainable development of animal production sector needs alternative protein sources for feeds formulation. Insects and fishery-and aquaculture by-products represent optimal alternative protein sources. A SWOT analysis has identified the key factors for the development of both protein sources production sectors. ARTICLE HISTORY
Background and Purpose-The role of mild hyperhomocysteinemia as a risk factor for cerebral ischemia may depend on stroke subtype. To test this hypothesis, we undertook a prospective case-control study of a group of patients with spontaneous cervical artery dissection (sCAD), a group of patients with atherothrombotic stroke (non-CAD), and a group of control subjects. Methods-Fasting total plasma homocysteine (tHcy) concentration, C677T MTHFR genotype, and 844ins68bp CBS genotype were determined in 25 patients with sCAD, 31 patients Ͻ45 years of age with non-CAD ischemic stroke, and 36 control subjects. Biochemical data in the patient groups were obtained within the first 72 hours of stroke onset. Results-Median tHcy levels were significantly higher in patients with sCAD (13.2 mol/L; range, 7 to 32.8 mol/L) compared with control subjects (8.9 mol/L; range, 5 to 17.3 mol/L; 95% CI, 1.05 to 1.52; Pϭ0.006). Cases with tHcy concentration above the cutoff level of 12 mol/L were significantly more represented in the group of patients with sCAD compared with control subjects (64% versus 13.9%; 95% CI, 2.25 to 44.23; Pϭ0.003); a significant association between the MTHFR TT genotype and sCAD was also observed (36% versus 11.1%; 95% CI, 1.10 to 19.23; Pϭ0.045). No significant difference in tHcy levels and in the prevalence of thermolabile MTHFR was found between patients with non-CAD ischemic stroke and control subjects and between patients with sCAD and non-CAD ischemic stroke. The distribution of the 844ins68bp CBS genotype and the prevalence of subjects carrying both the TT MTHFR and 844ins68bp CBS genotypes were not significantly different among the 3 groups. Conclusions-Our
Acute acidosis was induced in sheep, and gastrointestinal permeability was assessed by using lactulose as a permeability marker. Metabolism was evaluated by monitoring blood metabolites. Four rams (72.5 ± 4.6 kg BW) were used in a 2 × 2 changeover design experiment. The experimental period lasted 96 h from -24 to 72 h. After 24 h of fasting (from -24 to 0 h) for both controls and acidosis-induced rams (ACID), 0.5 kg of wheat flour was orally dosed at 0 and 12 h of the experimental period to ACID, while the basal diet (grass hay, ad libitum) was restored to control. At 24 h, a lactulose solution (30 g of lactulose in 200 mL of water) was orally administered. Blood samples were collected at -24, 0, 24, 48, and 72 h of the experimental periods for the analysis of metabolic profiles and during the 10 h after lactulose dosage to monitor lactulose changes in blood. In addition, rumen and fecal samples were collected at 24 h of the experimental period. The acidotic challenge markedly reduced (P < 0.01) rumen pH and VFA but increased rumen d- and l-lactic acid (P < 0.01). Concurrently, a decrease of fecal pH and VFA occurred in ACID (P < 0.01), together with an abrupt increase (P < 0.01) of lactate and fecal alkaline phosphatase. Blood lactulose was significantly increased in ACID peaking 2 h after lactulose dosage. Blood glucose, β-hydroxybutyrate, Ca, K, Mg, and alkaline phosphatase showed a significant reduction (P < 0.05) at 24 h, whereas urea and NEFA declined (P < 0.05) from 48 to 72 h. A strong inflammatory acute phase response with oxidative stress in ACID group was observed from 24 to 72 h; higher values of haptoglobin (P < 0.01) were measured from 24 to 72 h and of ceruloplasmin from 48 (P < 0.05) to 72 h (P < 0.01). Among the negative acute phase reactants, plasma albumin, cholesterol, paraoxonase, and Zn concentration also decreased (P < 0.05) in ACID at different time points between 24 and 72 h after acidotic challenge start. A rise (P < 0.05) of reactive oxygen metabolites and a drop of vitamin E (P< 0.01) between 24 and 72 h were indicative of oxidative stress in ACID. The perturbation of these blood metabolites suggests that acute acidosis was effectively induced by our model. The increase of lactulose in blood in ACID indicates that gastrointestinal permeability for the marker increased and the large increment after 2 h from dosage suggests that most of the passage occurred through the rumen or abomasal walls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.