Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
The exchange-correlation energy Exc is a significant part of the total energy of the quasi-two-dimensional electron gas. We investigate the performance of three-dimensional density functionals Exc [n ] in this system, showing how the local density approximation (LDA), the generalized gradient approximation (GGA), and the meta-GGA behave as functions of quantum well width or layer thickness. Shrinking the width in one direction is an example of non-uniform density scaling; we generalize the non-uniform scaling condition on the exact Exc [n ] to densities n (r ) that are infinitely extended. We find that, although all three semi-local approximations break down as the true two-dimensional (zero-width) limit is approached (and as the reduced density gradients diverge almost everywhere), these approximations yield good results for wide quasi-two-dimensional systems. The simple liquid drop model provides unexpectedly accurate results for exchange-correlation energies of the quasi-two-dimensional electron gas, and an insight into the domain of validity of the standard functionals. An exact-exchange functional provides the correct approach to the true two-dimensional limit.
The heats of formation for the n-alkanes C(n)H(n+2) for n = 5, 6, and 8 have been calculated using ab initio molecular orbital theory. Coupled-cluster calculations with perturbative triples (CCSD(T)) were employed for the total valence electronic energies. Correlation-consistent basis sets were used, up through the augmented quadruple zeta, to extrapolate to the complete basis set limit. Geometries were optimized at the B3LYP/TZVP and MP2/aug-cc-pVTZ levels. The MP2 geometries were used in the CCSD(T) calculations. Frequencies were determined at the density functional level (B3LYP/TZVP), and scaled zero point energies were calculated from the B3LYP frequencies. Core/valence, scalar relativistic, and spin-orbit corrections were included in an additive fashion to predict the atomization energies. The core/valence corrections are not small, (approximately 1.1 kcal/mol per carbon unit) and cannot be neglected for chemical accuracy. The calculated deltaH(298)f values are -35.0, -40.2, and -50.2 kcal/mol for C5H12, C6H14, and C8H18, respectively, in excellent agreement with the respective experimental values of -35.11 +/- 0.19, -39.89 +/- 0.19, and -49.90 +/- 0.31 kcal/mol. Isodesmic reaction energies are presented for some simple reactions involving C8H18 and are shown not to be strongly method dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.